Landau–Lifshitz model

In solid-state physics, the Landau–Lifshitz equation (LLE), named for Lev Landau and Evgeny Lifshitz, is a partial differential equation describing time evolution of magnetism in solids, depending on 1 time variable and 1, 2, or 3 space variables.

Landau–Lifshitz equation

The LLE describes an anisotropic magnet. The equation is described in (Faddeev & Takhtajan 2007, chapter 8) as follows: It is an equation for a vector field S, in other words a function on R1+n taking values in R3. The equation depends on a fixed symmetric 3 by 3 matrix J, usually assumed to be diagonal; that is, . It is given by Hamilton's equation of motion for the Hamiltonian

(where J(S) is the quadratic form of J applied to the vector S) which is

In 1+1 dimensions this equation is

In 2+1 dimensions this equation takes the form

which is the (2+1)-dimensional LLE. For the (3+1)-dimensional case LLE looks like

Integrable reductions

In general case LLE (2) is nonintegrable. But it admits the two integrable reductions:

a) in the 1+1 dimensions, that is Eq. (3), it is integrable
b) when . In this case the (1+1)-dimensional LLE (3) turns into the continuous classical Heisenberg ferromagnet equation (see e.g. Heisenberg model (classical)) which is already integrable.

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.