LLT polynomial

In mathematics, an LLT polynomial is one of a family of symmetric functions introduced by Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon (1997) as q-analogues of products of Schur functions.

J. Haglund, M. Haiman, N. Loehr (2005) showed how to expand Macdonald polynomials in terms of LLT polynomials. Ian Grojnowski and Mark Haiman (preprint) proved a positivity conjecture for LLT polynomials that combined with the previous result implies the Macdonald positivity conjecture for Macdonald polynomials, and extended the definition of LLT polynomials to arbitrary finite root systems.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.