Kathryn Hess

Katheryn Hess Bellwald
Born 21 September 1967
Bryn Mawr, Pennsylvania
Fields Mathematics
Institutions École Polytechnique Fédérale de Lausanne
Alma mater Massachusetts Institute of Technology
Doctoral advisor David Jay Anick
Doctoral students
Notable awards Fellow of the American Mathematical Society (2017)

Kathryn Hess is a professor of mathematics at École Polytechnique Fédérale de Lausanne (EPFL) and is known for her work on homotopy theory, category theory, and algebraic topology, both pure and applied. In particular, she applies the methods of algebraic topology to better understanding neurology[1] and cancer biology. She is a fellow of the American Mathematical Society.

Life

Kathryn Hess was born 21 September 1967 in Bryn Mawr, Pennsylvania. She began to accelerate in mathematics in 1979, thanks to the Mathematical Talent Development Project (MTDP) set up in Eau Claire, Wisconsin by her parents, through the Association for High Potential Children, which they also founded. Both programs are defunct at this point. Hess received her doctorate in mathematics from MIT in 1989 under the direction of David J. Anick. Her dissertation was entitled A Proof of Ganea's Conjecture for Rational Spaces.[H91][2]

Work

Hess has worked and written extensively on topics in algebraic topology including homotopy theory, model categories[H02] and algebraic K-theory.[HS] She has also used the methods of algebraic topology and category theory to investigate homotopical generalizations of descent theory[H10] and Hopf-Galois extensions.[H09] In particular, she has studied generalizations of these structures for ring spectra and differential graded algebras.

She has more recently used algebraic topology to understand structures in neurology[KDS][DHL] and materials science.[LBD]

Awards and honors

Hess received the Polysphere d'Or Teaching Award for her teaching at EPFL in 2013. In 2017, she was named a fellow of the American Math Society for "contributions to homotopy theory, applications of topology to the analysis of biological data, and service to the mathematical community".[3] In 2017, she received an award as a distinguished speaker of the European Mathematical Society. 

Selected publications

H91. Hess, Kathryn P. (1991). "A proof of Ganea's conjecture for rational spaces". Topology. 30 (2): 205–214. MR 1098914. doi:10.1016/0040-9383(91)90006-p. 
H02. Hess, Kathryn (2002). "Model categories in algebraic topology". Applied Categorical Structures. 10 (3): 195–220. MR 1916154. doi:10.1023/A:1015218106586. 
H09. Hess, Kathryn (2009). "Homotopic Hopf–Galois extensions: Foundations and examples". New topological contexts for Galois theory and algebraic geometry (BIRS 2008). Geom. Topol. Monogr. 16. MR 2544387. doi:10.2140/gtm.2009.16.79. 
H10. Hess, Kathryn (2010). "A general framework for homotopic descent and codescent". arXiv:1001.1556Freely accessible. 
DHL. Dotko, Pawe; Hess, Kathryn; Levi, Ran; Nolte, Max; Reimann, Michael; Scolamiero, Martina; Turner, Katharine; Muller, Eilif; Markram, Henry (2016). "Topological analysis of the connectome of digital reconstructions of neural microcircuits". arXiv:1601.01580Freely accessible. 
HS. Hess, Kathryn; Shipley, Brooke (2016). "Waldhausen K-theory of spaces via comodules". Advances in Mathematics. 290: 1079–1137. MR 3451948. doi:10.1016/j.aim.2015.12.019. 
KDS. Kanari, Lida; Dłotko, Paweł; Scolamiero, Martina; Levi, Ran; Shillcock, Julian; Hess, Kathryn; Markram, Henry (2016). "Quantifying topological invariants of neuronal morphologies". arXiv:1603.08432Freely accessible. 
LBD. Lee, Yongjin; Barthel, Senja D.; Dłotko, Paweł; Moosavi, S. Mohamad; Hess, Kathryn; Smit, Berend (2017). "Pore-geometry recognition: on the importance of quantifying similarity in nanoporous materials". arXiv:1701.06953Freely accessible. 

References

  1. "Prof. Kathryn Hess Bellwald | UPHESS". hessbellwald-lab.epfl.ch. Retrieved 2017-04-09.
  2. Kathryn Hess at the Mathematics Genealogy Project
  3. "2017 Class of the Fellows of the AMS". American Mathematical Society. Retrieved 2017-04-09.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.