Karl Seebach
Karl Seebach (June 28, 1912 in Munich – July 18, 2007 in Munich) was a German mathematician.
Seebach earned his doctorate at the University of Munich under Heinrich Tietze and Arnold Sommerfeld, in 1938.[1] From 1977 to 1981, he held the Chair for Didactics of Mathematics at the University of Munich.[2] As early as December 1995, he held ordinarius professor emeritus status at the University,[3] and was still listed as such as late as June 2007.[4]
Seebach was the author of many mathematics textbooks for the Gymnasium.[5]
Books
- Josef Breuer, Paul Knabe, Josef Lauter, Karl Seebach, and Klaus Wigand Handbuch der Schulmatematik: Band 2 Algebra (Hermann Schroedel)
- Johannes Blume, Gerhard Frey, Heinrich Gall, Paul Knabe, Paul Mönnig, Karl Seebach, and Klaus Wigand Handbuch der Schulmathematik: Band 5 Einzelfragen der Mathematik (Hermann Schroedel)
- Ludwig Schecher and Karl Seebach Einführung in die Mathematik. Bd. 1 (Schmidt, 1950)
- Karl Seebach and Reinhold Federle Vorschläge zum Aufbau der Analytischen Geometrie in vektorieller Behandlung (Ehrenwirth, 1965)
- Friedrich Barth, Karl Seebach, and Ernst Winkler Vorschläge zur Behandlung der geometrischen Abbildungen in der Ebene (Ehrenwirth, 1968)
- Karl Seebach and Edmund Kösel Arbeitsblätter zum Lehrerkolleg. Hauptschule. Schuljahr 9. H. 3. Mathematik, Physik, Chemie (TR-Verlagsunion, 1969)
Notes
- ↑ Seebach – Mathematics Genealogy Project. 1938 Dissertation title: Über die Erweiterung des Definitionsbereiches differenzierbarer Funktionen. Advisor 1: Heinrich Tietze. Advisor 2: Arnold Sommerfeld.
- ↑ Seebach - Prof Dr., geb. 28.6.1912, 1977-1981 Inhaber des Lehrstuhls für Didaktik der Mathematik.
- ↑ Seebach - Emeritierter Ordinarius der Ludwig-Maximilians-Universität München, December 1995.
- ↑ Seebach – University of Munich Mathematics Institute. Website page updated November 2006. Emeritus status cited.
- ↑ Seebach – Gymnasium Textbook Author.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.