KSTAR

KSTAR
Type Tokamak
Operation date 2008–
Major radius 1.8 m
Minor Radius 0.5 m
Magnetic field 3.5 T (toroidal)
Heating 14 MW
Plasma current 2 MA
Location Daejeon, South Korea

The KSTAR, or Korea Superconducting Tokamak Advanced Research is a magnetic fusion device being built at the National Fusion Research Institute in Daejeon, South Korea. It is intended to study aspects of magnetic fusion energy which will be pertinent to the ITER fusion project as part of that country's contribution to the ITER effort. The project was approved in 1995 but construction was delayed by the East Asian financial crisis which weakened the South Korean economy considerably; however the construction phase of the project was completed on September 14, 2007. First plasma occurred on July 15, 2008.[1] or more likely on June 30, 2008.[2]

KSTAR will be one of the first research tokamaks in the world to feature fully superconducting magnets, which again will be of great relevance to ITER as this will also use SC magnets. The KSTAR magnet system consists of 16 niobium-tin direct current toroidal field magnets, 10 niobium-tin alternating current poloidal field magnets and 4 niobium-titanium alternating current poloidal field magnets. It is planned that the reactor will study plasma pulses of up to 20 seconds duration until 2011, when it will be upgraded to study pulses of up to 300 seconds duration. The reactor vessel will have a major radius of 1.8 m, a minor radius of 0.5 m, a maximum toroidal field of 3.5 tesla, and a maximum plasma current of 2 megaampere. As with other tokamaks, heating and current drive will be initiated using neutral beam injection, ion cyclotron resonance heating (ICRH), radio frequency heating and electron cyclotron resonance heating (ECRH). Initial heating power will be 8 megawatt from neutral beam injection upgradeable to 24 MW, 6 MW from ICRH upgradeable to 12 MW, and at present undetermined heating power from ECRH and RF heating. The experiment will use both hydrogen and deuterium fuels but not the deuterium-tritium mix which will be studied in ITER.

In 2012, it succeeded in maintaining high-temperature plasma (about 50 million degrees Celsius) for 17 seconds.

Timeline

The design was based on Tokamak Physics Experiment which was based on Compact Ignition Tokamak design - See Robert J. Goldston.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.