k–omega turbulence model

In computational fluid dynamics, the k–omega (k–ω) turbulence model is a common two-equation turbulence model, that is used as a closure for the Reynolds-averaged Navier–Stokes equations (RANS equations). The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first variable being the turbulence kinetic energy (k) while the second (ω) is the specific rate of dissipation (of the turbulence kinetic energy k into internal thermal energy).

Standard (Wilcox) k–ω turbulence model [1]

The eddy viscosity νT, as needed in the RANS equations, is given by: νT = k, while the evolution of k and ω is modelled as:

For recommendations for the values of the different parameters, see Wilcox (2008).

Notes

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.