IRF1

IRF1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesIRF1, IRF-1, MAR, interferon regulatory factor 1
External IDsMGI: 96590 HomoloGene: 1658 GeneCards: IRF1
Gene location (Human)
Chr.Chromosome 5 (human)[1]
BandNo data availableStart132,481,609 bp[1]
End132,490,798 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

3659

16362

Ensembl

ENSG00000125347

ENSMUSG00000018899

UniProt

P10914

P15314

RefSeq (mRNA)

NM_002198

NM_001159393
NM_001159396
NM_008390

RefSeq (protein)

NP_002189

NP_001152865
NP_001152868
NP_032416

Location (UCSC)Chr 5: 132.48 – 132.49 MbChr 11: 53.77 – 53.78 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Interferon regulatory factor 1 is a protein that in humans is encoded by the IRF1 gene.[5][6]

Function

Interferon regulatory factor 1 was the first member of the interferon regulatory transcription factor (IRF) family identified. Initially described as a transcription factor able to activate expression of the cytokine Interferon beta,[7] IRF-1 was subsequently shown to function as a transcriptional activator or repressor of a variety of target genes. IRF-1 regulates expression of target genes by binding to an interferon stimulated response element (ISRE) in their promoters. The IRF-1 protein binds to the ISRE via an N-terminal helix-turn-helix DNA binding domain,[8] which is highly conserved among all IRF proteins.

Beyond its function as a transcription factor, IRF-1 has also been shown to trans-activate the tumour suppressor protein p53 through the recruitment of its co-factor p300.[9]

IRF-1 has been shown to play roles in the immune response, regulating apoptosis, DNA damage and tumor suppression.[10]

Regulation

It has been shown that the extreme C-terminus of IRF-1 regulates its ability to activate transcription, nanobodies targeting this domain (MF1) are able to increase IRF-1 activity.[11]

Model organisms

Model organisms have been used in the study of IRF1 function. A conditional knockout mouse line, called Irf1tm1a(EUCOMM)Wtsi[15][16] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute.[17][18][19]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[13][20] Twenty five tests were carried out and two phenotypes were reported. Homozygous mutant animals had abnormal peripheral blood lymphocytes, specifically decreased CD8-positive T cell and NK cell numbers and an increase in CD4-positive T cells. The mice also had an abnormal integument phenotype determined by a study of tail epidermis.[13]

Interactions

IRF1 has been shown to interact with:

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000125347 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000018899 - Ensembl, May 2017
  3. "Human PubMed Reference:".
  4. "Mouse PubMed Reference:".
  5. Maruyama M, Fujita T, Taniguchi T (Jun 1989). "Sequence of a cDNA coding for human IRF-1". Nucleic Acids Res. 17 (8): 3292. PMC 317732Freely accessible. PMID 2726461. doi:10.1093/nar/17.8.3292.
  6. Itoh S, Harada H, Nakamura Y, White R, Taniguchi T (Nov 1991). "Assignment of the human interferon regulatory factor-1 (IRF1) gene to chromosome 5q23-q31". Genomics. 10 (4): 1097–9. PMID 1680796. doi:10.1016/0888-7543(91)90208-V.
  7. Miyamoto M, Fujita T, Kimura Y, Maruyama M, Harada H, Sudo Y, Miyata T, Taniguchi T (September 1988). "Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-beta gene regulatory elements". Cell. 54 (6): 903–13. PMID 3409321. doi:10.1016/S0092-8674(88)91307-4.
  8. Escalante CR, Yie J, Thanos D, Aggarwal AK (January 1998). "Structure of IRF-1 with bound DNA reveals determinants of interferon regulation". Nature. 391 (6662): 103–6. PMID 9422515. doi:10.1038/34224.
  9. Dornan D, Eckert M, Wallace M, Shimizu H, Ramsay E, Hupp TR, Ball KL (November 2004). "Interferon regulatory factor 1 binding to p300 stimulates DNA-dependent acetylation of p53". Mol. Cell. Biol. 24 (22): 10083–98. PMC 525491Freely accessible. PMID 15509808. doi:10.1128/MCB.24.22.10083-10098.2004.
  10. "Entrez Gene: IRF1 interferon regulatory factor 1".
  11. Möller A, Pion E, Narayan V, Ball KL (December 2010). "Intracellular activation of interferon regulatory factor-1 by nanobodies to the multifunctional (Mf1) domain". J. Biol. Chem. 285 (49): 38348–61. PMC 2992268Freely accessible. PMID 20817723. doi:10.1074/jbc.M110.149476.
  12. "Citrobacter infection data for Irf1". Wellcome Trust Sanger Institute.
  13. 1 2 3 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x.
  14. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  15. "International Knockout Mouse Consortium".
  16. "Mouse Genome Informatics".
  17. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. PMC 3572410Freely accessible. PMID 21677750. doi:10.1038/nature10163.
  18. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. PMID 21677718. doi:10.1038/474262a.
  19. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. PMID 17218247. doi:10.1016/j.cell.2006.12.018.
  20. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol. 12 (6): 224. PMC 3218837Freely accessible. PMID 21722353. doi:10.1186/gb-2011-12-6-224.
  21. Narayan V, Pion E, Landré V, Müller P, Ball KL (October 2010). "Docking dependent ubiquitination of the interferon regulatory factor-1 tumour suppressor protein by the ubiquitin ligase CHIP". J Biol Chem. 286 (1): 607–19. PMC 3013021Freely accessible. PMID 20947504. doi:10.1074/jbc.M110.153122.
  22. Kular RK, Yehiely F, Kotlo KU, Cilensek ZM, Bedi R, Deiss LP (October 2009). "GAGE, an antiapoptotic protein binds and modulates the expression of nucleophosmin/B23 and interferon regulatory factor 1". J. Interferon Cytokine Res. 29 (10): 645–55. PMID 19642896. doi:10.1089/jir.2008.0099.
  23. Narayan V, Eckert M, Zylicz A, Zylicz M, Ball KL (September 2009). "Cooperative regulation of the interferon regulatory factor-1 tumor suppressor protein by core components of the molecular chaperone machinery". J Biol Chem. 284 (38): 25889–99. PMC 2757990Freely accessible. PMID 19502235. doi:10.1074/jbc.M109.019505.
  24. Schaper F, Kirchhoff S, Posern G, Köster M, Oumard A, Sharf R, Levi BZ, Hauser H (October 1998). "Functional domains of interferon regulatory factor I (IRF-1)". Biochem. J. 335 (1): 147–57. PMC 1219763Freely accessible. PMID 9742224.
  25. Sharf R, Azriel A, Lejbkowicz F, Winograd SS, Ehrlich R, Levi BZ (June 1995). "Functional domain analysis of interferon consensus sequence binding protein (ICSBP) and its association with interferon regulatory factors". J. Biol. Chem. 270 (22): 13063–9. PMID 7768900. doi:10.1074/jbc.270.22.13063.
  26. Umegaki N, Tamai K, Nakano H, Moritsugu R, Yamazaki T, Hanada K, Katayama I, Kaneda Y (June 2007). "Differential regulation of karyopherin alpha 2 expression by TGF-beta1 and IFN-gamma in normal human epidermal keratinocytes: evident contribution of KPNA2 for nuclear translocation of IRF-1". J. Invest. Dermatol. 127 (6): 1456–64. PMID 17255955. doi:10.1038/sj.jid.5700716.
  27. Negishi H, Fujita Y, Yanai H, Sakaguchi S, Ouyang X, Shinohara M, Takayanagi H, Ohba Y, Taniguchi T, Honda K (October 2006). "Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program". Proc. Natl. Acad. Sci. U.S.A. 103 (41): 15136–41. PMC 1586247Freely accessible. PMID 17018642. doi:10.1073/pnas.0607181103.
  28. Masumi A, Wang IM, Lefebvre B, Yang XJ, Nakatani Y, Ozato K (March 1999). "The histone acetylase PCAF is a phorbol-ester-inducible coactivator of the IRF family that confers enhanced interferon responsiveness". Mol. Cell. Biol. 19 (3): 1810–20. PMC 83974Freely accessible. PMID 10022868.
  29. Chatterjee-Kishore M, van Den Akker F, Stark GR (July 2000). "Adenovirus E1A down-regulates LMP2 transcription by interfering with the binding of stat1 to IRF1". J. Biol. Chem. 275 (27): 20406–11. PMID 10764778. doi:10.1074/jbc.M001861200.
  30. Sgarbanti M, Borsetti A, Moscufo N, Bellocchi MC, Ridolfi B, Nappi F, Marsili G, Marziali G, Coccia EM, Ensoli B, Battistini A (May 2002). "Modulation of human immunodeficiency virus 1 replication by interferon regulatory factors". J. Exp. Med. 195 (10): 1359–70. PMC 2193759Freely accessible. PMID 12021315. doi:10.1084/jem.20010753.
  31. Lee JH, Chun T, Park SY, Rho SB (September 2008). "Interferon regulatory factor-1 (IRF-1) regulates VEGF-induced angiogenesis in HUVECs". Biochim. Biophys. Acta. 1783 (9): 1654–62. PMID 18472010. doi:10.1016/j.bbamcr.2008.04.006.
  32. Gupta, M.; Rath, PC (2014). "Interferon regulatory factor-1 (IRF-1) interacts with regulated in development and DNA damage response 2 (REDD2) in the cytoplasm of mouse bone marrow cells.". Int J Biol Macromol. 65: 41–50. PMID 24412152. doi:10.1016/j.ijbiomac.2014.01.005.

See also

References

    Further reading

    This article incorporates text from the United States National Library of Medicine, which is in the public domain.

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.