Institute for Laser Science
The Institute for Laser Science is a department of the University of Electro Communications, located near Tokyo, Japan.
Location
The Institute for Laser Science is located at 1-5-1 Chofugaoka, Chōfu, Tokyo, 182-8585, Japan. The coordinates are (+35.657952,+139.54128).
Access:
- By train: Keiō Line, Chofu station (about 20 min from Shinjuku by "express"); exit to North, 5 min walk North until road 20, cross road 20, walk left and enter the campus of University of Electro Communications through the Sei-mon (main gate), walk North and West, pass through the "Naka-mon" (central gate) and walk East; the last building at the left hand side.
- By car: Chuo highway, Exit "Chofu", (toward Shinjuku), one block East by road 20, then left (North) at the first traffic signal, then first right through "Nishi-mon" (West gate).
- By walking: from Chofu Airport, walk East until road 12 and turn right (South); after to cross Nogawa river and then to pass under the Chuo highway, look left for the "Nishi-mon"(West gate) and enter there. (20 min to walk)
History and achievements
Established in 1980, the Institute specializes mainly in improving the performance of gas lasers, especially excimer lasers. Between 1990 and 2005, the Institute developed fiber disk lasers, disk laser (active mirror)[1] and the concept of power scaling. Ultra-low loss mirror was developed [2] aiming application for high power lasers (1995).
Since 2000, its main research directions have been in the areas of solid state lasers, fiber lasers and ceramics. Since then, the Institute has carried out experiments with quantum reflection of cold excited neon atoms from silicon surfaces. [3] [4]
The institute has also performed the first experiments with quantum reflection [3] of cold atoms from Si surface and, in particular, ridged mirrors [5] for cold atoms and the interpretation as Zeno effect. [6][7]
In 2004, the Institute developed the first microchip atomic trap.[8][9]
Current research
- Laser science, solid-state lasers http://wwwü.ils.uec.ac.jp/Essl.html,
in particular, generation of very short pulses http://www.ils.uec.ac.jp/Ehighintensity.html], fiber lasers - Frequency stabilization, http://www.ils.uec.ac.jp/Egravity.html
- Power scaling[10][11] of disk lasers and limits for density of excitations in laser materials.[12]
- Application of causality and McCumber relation in physics of laser materials.[13][14]
- Coherent addition [15] of fiber lasers.
- Random lasers
- Self-pulsation [16] and Q-switching.[17]
- Generation and analysis of multi-charge ions, http://www.ils.uec.ac.jp/EHCI.html,
- Ultra-cold atoms (cooling, trapping, Bose–Einstein condensate, atom optics and holography, quantum reflection and ridged mirrors.[18]
- Trapping[9] and fluorescence of atoms at nanowires [19]
- Fundamentals of quantum mechanics with BEC.[20]
See also
- University of Electro-Communications (English version)
References
- ↑ K. Ueda; N. Uehara (1993). "Laser-diode-pumped solid state lasers for gravitational wave antenna". Proceedings of SPIE. 1837: 336–345. doi:10.1117/12.143686.
- ↑ N.Uehara; A.Ueda; K.Ueda; H.Sekiguchi; T.Mitake; K.Nakamura; N.Kitajima; I.Kataoka (1995). "Ultralow-loss mirror of the parts-in-106 level at 1064 nm". Optics Letters. 20 (6): 530–532. Bibcode:1995OptL...20..530U. doi:10.1364/OL.20.000530.
- 1 2 F.Shimizu (2001). "Specular Reflection of Very Slow Metastable Neon Atoms from a Solid Surface". Physical Review Letters. 86 (6): 987–990. Bibcode:2001PhRvL..86..987S. PMID 11177991. doi:10.1103/PhysRevLett.86.987.
- ↑ H.Oberst; Y.Tashiro; K.Shimizu; F.Shimizu (2005). "Quantum reflection of He* on silicon". Physical Review A. 71 (5): 052901. Bibcode:2005PhRvA..71e2901O. doi:10.1103/PhysRevA.71.052901.
- ↑ F.Shimizu; J. Fujita (2002). "Giant Quantum Reflection of Neon Atoms from a Ridged Silicon Surface". Journal of the Physical Society of Japan. 71: 5–8. Bibcode:2002JPSJ...71....5S. arXiv:physics/0111115 . doi:10.1143/JPSJ.71.5.
- ↑ D. Kouznetsov; H. Oberst (2005). "Reflection of Waves from a Ridged Surface and the Zeno Effect". Optical Review. 12 (5): 1605–1623. Bibcode:2005OptRv..12..363K. doi:10.1007/s10043-005-0363-9.
- ↑ D.Kouznetsov; H.Oberst (2005). "Scattering of waves at ridged mirrors" (PDF). Physical Review A. 72: 013617. Bibcode:2005PhRvA..72a3617K. doi:10.1103/PhysRevA.72.013617.
- ↑ "Atom Optics, Coherence and Ultra Cold Atoms" on the website of ILS.
- 1 2 M.Horikoshi; K.Nakagawa (2006). "Atom chip based fast production of Bose-Einstein condensat". Applied Physics B. 82 (3): 363–366. Bibcode:2006ApPhB..82..363H. doi:10.1007/s00340-005-2083-z.
- ↑ D. Kouznetsov; J.-F. Bisson; J. Dong; K. Ueda (2006). "Surface loss limit of the power scaling of a thin-disk laser" (PDF). Journal of the Optical Society of America B. 23 (6): 1074–1082. Bibcode:2006JOSAB..23.1074K. doi:10.1364/JOSAB.23.001074.
- ↑ D.Kouznetsov; J.-F.Bisson; J.Dong; K.Ueda (2007). "Scaling laws of a thin disk lasers" (PDF). Preprint ILS-UEC.
- ↑ J.-F.Bisson; D.Kouznetsov; K.Ueda; T.Fredrich-Thornton; K.Petermann; G.Huber (2007). "Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics" (PDF). Applied Physics Letters. 90 (20): 201901. Bibcode:2007ApPhL..90t1901B. doi:10.1063/1.2739318.
- ↑ D.Kouznetsov (2007). "Broadband laser materials and the McCumber relation" (PDF). Chinese Optics Letters. 5: S240–S242.
- ↑ D.Kouznetsov (2007). "Efficient diode-pumped Yb:Gd2SiO5 laser: Comment" (PDF). Applied Physics Letters. 90 (6): 066101. Bibcode:2007ApPhL..90f6101K. doi:10.1063/1.2435309.
- ↑ D.Kouznetsov; J. F. Bisson; A. Shirakawa; K. Ueda (2005). "Limits of Coherent Addition of Lasers: Simple Estimate" (PDF). Optical Review. 12 (6): 445–44. Bibcode:2005OptRv..12..445K. doi:10.1007/s10043-005-0445-8.
- ↑ D. Kouznetsov; J.-F. Bisson; J. Li; K. Ueda (2007). "Self-pulsing laser as oscillator Toda: Approximation through elementary functions". Journal of Physics A. 40 (9): 1–18. Bibcode:2007JPhA...40.2107K. doi:10.1088/1751-8113/40/9/016.
- ↑ J.Dong; A. Shirakawa; K. Ueda (2007). "Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser". Laser Physics Letters. 4 (2): 109–116. Bibcode:2007LaPhL...4..109D. doi:10.1002/lapl.200610077.
- ↑ D.Kouznetsov; H. Oberst; K. Shimizu; A. Neumann; Y. Kuznetsova; J.-F. Bisson; K. Ueda; S. R. J. Brueck (2006). "Ridged atomic mirrors and atomic nanoscope". Journal of Physics B. 39 (7): 1605–1623. Bibcode:2006JPhB...39.1605K. doi:10.1088/0953-4075/39/7/005.
- ↑ L.P.Nayak; P. N. Melentiev; M. Morinaga; F. L. Klein; V. I. Balykin; K. Hakuta (2007). "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence". Optics Express. 15 (9): 5431–5438. Bibcode:2007OExpr..15.5431N. PMID 19532797. doi:10.1364/OE.15.005431.
- ↑ M.Sadgrove; M.Horikoshi, T.Sekimura and K.Nakagawa (2007). "Rectified Momentum Transport for a Kicked Bose-Einstein Condensate". Physical Review Letters. 99 (4): 043002. Bibcode:2007PhRvL..99d3002S. PMID 17678359. arXiv:0706.1627 . doi:10.1103/PhysRevLett.99.043002.
External links
Coordinates: 35°39′29″N 139°32′29″E / 35.6580°N 139.5413°E