Indira Gandhi Centre for Atomic Research

Indira Gandhi Centre for Atomic Research
இந்திரா காந்தி அணு ஆராய்ச்சி மையம்
Established 1971
Research type Nuclear research centre
Budget 8,450 million (US$130 million) per annum
Field of research
Atomic Energy, Material Physics, Nano-Sciences, Electronics and Instrumentation, Reactor Engineering, Metallurgy
Director Dr. A.K.Bhaduri
Staff 2511
Location Kalpakkam, Tamil Nadu, India
603102
Operating agency
Department of Atomic Energy, Government of India
Website www.igcar.ernet.in

Indira Gandhi Centre for Atomic Research (IGCAR) is one of India's premier nuclear research centres. It is the second largest establishment of the Department of Atomic Energy (DAE), next to Bhabha Atomic Research Centre (BARC), located at Kalpakkam, 80 km south of Chennai, India.[1] It was established in 1971 as an exclusive centre dedicated to the pursuit of fast reactor science and technology, due to the vision of Dr. Vikram Sarabhai.[2] Originally, it was called as Reactor Research Centre (RRC). It was renamed as Indira Gandhi Centre for Atomic Research (IGCAR) by the then Prime Minister of India, Rajiv Gandhi in December 1985.[3] The centre is engaged in broad-based multidisciplinary programme of scientific research and advanced engineering directed towards the development of Fast Breeder Reactor technology, in India.[1]

The present Director of IGCAR is Dr. A.K. Bhaduri. He has taken over as Director with effect from 1 July 2016, following the superannuation of Dr. S. A. V. Satya Murty.[4]

History

The fast reactor related research in India, originated at BARC, Mumbai. Later, RRC was established at Kalpakkam with the same mandate.[2] The Central Workshop, Safety Research Laboratory and Materials Sciences Laboratory were constructed in 1975–1976. Soon, the Radio-Chemistry Lab and Electronics and Instrumentation Lab were constructed.

The centre houses a Fast Breeder Test Reactor (FBTR), which attained its first criticality in October 1985.[2]

A few years later, in 1994, SQUID, ASIC and Diamond Anvil Cells were developed. In the same year, High-Power Physics and Engineering Experiments were undertaken in the FBTR.

In 1996, KAMINI reactor reached criticality. State-of-the-art Neutronic Channels were commissioned for FBTR in 1999.

A Boron-Enrichment Plant was commissioned in April 2001.

A BARC Training School[2] was started in 2006. In 2009, FBTR was operated at a maximum power level of 18.6 MWt with 55 sub-assemblies for 1732 hours.

List of Directors

Commercial Reactors

The facility houses two PHWRs that generate 220MWe each that operate for commercial purposes. These are managed independently by the Nuclear Power Corporation of India.[5]

Research Reactors

There are three research reactors at IGCAR.

[6]

In addition, the Research Facility also built the 100MWe reactor for India's first nuclear submarine the Arihant class submarine project and operated it on land for testing purposes since it attained criticality in December 2004.[7] The submarine launched on 26 July 2009 has this reactor.[8]

Reprocessing Plant

The Kalpakkam Atomic Reprocessing Plant [KARP] facility has been estimated to have a capacity to reprocess 100 tonnes of plutonium per annum.it incorporates a number of innovative features such as hybrid maintenance concept in hot cells using servo-manipulators and engineered provisions for extending the life of the plant. This plant will cater to the needs of reprocessing fuels from MAPS as well as FBTR. It has mastered the technology of reprocessing highly irradiated mixed carbide fuel for the first time in the world. [5]

Fast Reactor Fuel Reprocessing at IGCAR

Reprocessing Development Laboratory was designed in early seventies and the commissioning of inactive facilities was carried out in 1976. The plutonium handling facilities were cleared for operation in 1980. The reprocessing of irradiated thorium rods which was carried out during the period 1989 to 1992 in the concrete shielded cells, was the first major radioactive operation. The U-233 recovered during the operation was used in fabricating the fuel for the KAlpakkam MINI reactor (KAMINI). U-233 was also useful for the fuel development programme for carrying out the Prototype Fast Breeder Reactor test fuel irradiation experiments in Fast Breeder Test Reactor. Apart from this, the operation aided in validating the equipment and design of system as well as the manpower training. Later a hot cell facility for reprocessing of Fast Breeder Test Reactor fuel was conceived which had the necessary features for delivering the product with all the uncertainties in the dissolution of irradiated fuel and process flowsheet. Added to this was the need for the deployment of the yet to be proven designs of centrifuge and centrifugal extractors without which the success of the PUREX process for fast reactor fuel reprocessing would be doubtful. With these minimal inputs, the hot cell facility, Lead Mini Cell (LMC) was created, which was later rechristened as CORAL (COmpact Reprocessing facility for Advanced fuels in Lead cells). Based on the dissolution experiments carried out on unirradiated single pellets and systematic studies related to the third phase formation, the flow sheet, prepared earlier for the oxide fuel was modified.[9]

Activities

Chemistry Group: Presently there are 4 subdivisions: Fuel Chemistry Division (FChD), Materials Chemistry Division (MCD), and Chemical Facilities Division (CFD). Facilities include Far-IR Fourier Transform Infrared Spectrometer, Fluorimeter RF-5000, Impedance Spectrometer and Inductively Coupled Mass Spectrometer (ICP-MS), Alpha Spectrometer, Liquid Scintillation Counter, High Purity Germanium Detector, Neutron Counter ED-XRF, HPLC, SFC, Ion Chromatography, Gas Chromatography etc.Among various achievements of the Group, Radioisotope production[10][11] for medicinal importance is the ongoing important projects and has societal impact.

Electronics, Instrumentation and Radiological Safety Group:

Electronics, Instrumentation and Radiological Safety Group consists of Instrumentation & Control Group and Radiological Safety & Environmental Group, Computer Division and Security Electronics Section.

Major activities of this group include:

Engineering Services Group: Includes Central Workshop, Electrical Services and Civil Engineering Section.

Fast Reactor Technology Group: Some activities include

Metallurgy and Materials Group: This group works consists of the

Materials Science Group: This group consists of

Nuclear & Safety Engineering Group: The objectives of the N&SEG are

Reactor Engineering Group

Reactor Operation & Maintenance Group: The Fast Breeder Test Reactor (FBTR), the flagship of this centre and Kalpakkam Mini Reactor (KAMINI) come under this group. Reactor Operation and Maintenance Group consists of Reactor Operation Division (ROD), Reactor Maintenance Division (RMD), Technical Services Division (TSD) and Training & Human Resources Development Division (THRDD). Quality Assurance and Industrial Safety Section (QA&IS) and Liaison Cell are also coming under this group. Operation and maintenance of both FBTR & KAMINI reactors, planning and conducting irradiation programmes, reactor physics tests and engineering tests, manpower planning & training for FBTR and PFBR (BHAVINI), maintenance of chemical parameters of the coolants, periodic safety revaluation are carried out by ROMG.

Reprocessing Group: It is pursuing research and development of equipment and processes. It is also running a pilot plant for FBTR Fuel processing, constructing demo plant for FBTR and PFBR fuel reprocessing and designing the PFBR reprocessing plant.

Fast Reactor Fuel Cycle Facility

Strategic & Human Resources Planning Section

Staff

The Centre has a staff strength of 2514 including 1243 Engieers and Scientists.

Budget

The annual outlay of the Centre is around 8450 Million INR towards its Research & Development activities and plan.

Collaborations

The interaction with IIT-M started in 1995 through two collaborative projects, which were initiated with late Dr. R.S. Alwar, eminent professor in Applied Mechanics. The first project was on simulation of thermal shock on the control plug mockup and the second was on simulation of thermal striping in the core structure. An MoU was established on 19 July 1997 for the formation of ‘IGCAR- IITM Cell’ with Prof. R. Natarajan (then Director, IIT-M) as chairman and late Dr. Placid Rodriguez as Co-Chairman. Prof. K.V.S. Rama Rao was Dean, ICSR during that period. In the first cell meeting held on 26 February 1997, seven projects were identified. Based on the decisions taken in the meeting, four projects with a funding to the tune of eighty eight lakhs were sanctioned. In the past thirteen years, twenty five meetings of the IGCAR-IITM cell have been conducted. Already twenty nine projects have been completed with the funds to the tune of 40.5 million and fifteen projects are in progress with a funding of 34 million. [12]

Training School

IGCAR has a BARC Training School where young science post graduates and engineering graduates are trained in multiple disciplines for a period of one year.[2]

References

  1. 1 2 "About IGCAR".
  2. 1 2 3 4 5 "IGC newsletter" (PDF). October 2004.
  3. "A mission at Kalpakkam: Frontline article".
  4. "Dr. A.K. Bhaduri is next IGCAR director".
  5. 1 2 John Pike. "Kalpakkam Reprocessing Plant – India Special Weapons Facilities". Globalsecurity.org. Retrieved 2012-06-22.
  6. "Kalpakkam PFBR to be completed ahead of schedule". Hinduonnet.com. 7 September 2005. Retrieved 2012-06-22.
  7. "ATV project: India crosses major milestone". Hindu.com. Retrieved 2012-06-22.
  8. Rajat Pandit, TNN 17 Jul 2009, 01.10 am IST (17 July 2009). "India set to launch nuclear-powered submarine". The Times of India. Retrieved 2012-06-22.
  9. "October 2011 – Volume 90" (PDF). igcar.ernet.in. Retrieved 2012-09-19.
  10. Saha, Debasish; Vadivu, E. Senthil; Kumar, R.; Subramani, C. R. Venkata (2013). "Separation of bulk Y from 89Y(n,p) produced 89Sr by extraction chromatography using TBP coated XAD-4 resin". Journal of Radioanalytical and Nuclear Chemistry. 298 (2): 1309–1314. doi:10.1007/s10967-013-2514-y.
  11. Saha, Debasish; Vithya, J.; Kumar, G. V. S. Ashok; Swaminathan, K.; Kumar, R.; Subramani, C. R. Venkata; Rao, P. R. Vasudeva (2013). "Feasibility studies for production of 89Sr in the Fast Breeder Test Reactor (FBTR)". Radiochim. Acta. 101 (10): 667–673. doi:10.1524/ract.2013.2055.
  12. "April 2010 – Volume 84" (PDF). igcar.ernet.in. Retrieved 2012-09-19.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.