ID3 algorithm

Potential ID3-generated decision tree. Attributes are arranged as nodes by ability to classify examples. Values of attributes are represented by branches.

In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan[1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm, and is typically used in the machine learning and natural language processing domains.

Algorithm

The ID3 algorithm begins with the original set as the root node. On each iteration of the algorithm, it iterates through every unused attribute of the set and calculates the entropy (or information gain ) of that attribute. It then selects the attribute which has the smallest entropy (or largest information gain) value. The set is then split by the selected attribute (e.g. age is less than 50, age is between 50 and 100, age is greater than 100) to produce subsets of the data. The algorithm continues to recurse on each subset, considering only attributes never selected before.
Recursion on a subset may stop in one of these cases:

Throughout the algorithm, the decision tree is constructed with each non-terminal node representing the selected attribute on which the data was split, and terminal nodes representing the class label of the final subset of this branch.

Summary

  1. Calculate the entropy of every attribute using the data set
  2. Split the set into subsets using the attribute for which the resulting entropy (after splitting) is minimum (or, equivalently, information gain is maximum)
  3. Make a decision tree node containing that attribute
  4. Recurse on subsets using remaining attributes.

Pseudocode

ID3 (Examples, Target_Attribute, Attributes)
    Create a root node for the tree
    If all examples are positive, Return the single-node tree Root, with label = +.
    If all examples are negative, Return the single-node tree Root, with label = -.
    If number of predicting attributes is empty, then Return the single node tree Root,
    with label = most common value of the target attribute in the examples.
    Otherwise Begin
        A ← The Attribute that best classifies examples.
        Decision Tree attribute for Root = A.
        For each possible value, vi, of A,
            Add a new tree branch below Root, corresponding to the test A = vi.
            Let Examples(vi) be the subset of examples that have the value vi for A
            If Examples(vi) is empty
                Then below this new branch add a leaf node with label = most common target value in the examples
            Else below this new branch add the subtree ID3 (Examples(vi), Target_Attribute, Attributes – {A})
    End
    Return Root

Properties

ID3-generated decision tree used to determine whether a particular nucleotide pair within a pre-mRNA sequence corresponds to an mRNA splice site. This tree has been shown to have a 95% correct prediction rate.[2]

ID3 does not guarantee an optimal solution; it can get stuck in local optima. It uses a greedy approach by selecting the best attribute to split the dataset on each iteration. One improvement that can be made on the algorithm can be to use backtracking during the search for the optimal decision tree.

ID3 can overfit to the training data. To avoid overfitting, smaller decision trees should be preferred over larger ones. This algorithm usually produces small trees, but it does not always produce the smallest possible tree.

ID3 is harder to use on continuous data. If the values of any given attribute is continuous, then there are many more places to split the data on this attribute, and searching for the best value to split by can be time consuming.

Usage

The ID3 algorithm is used by training on a dataset to produce a decision tree which is stored in memory. At runtime, this decision tree is used to classify new unseen test cases by working down the decision tree using the values of this test case to arrive at a terminal node that tells you what class this test case belongs to.

The ID3 metrics

Entropy

Entropy is a measure of the amount of uncertainty in the (data) set (i.e. entropy characterizes the (data) set ).

Where,

When , the set is perfectly classified (i.e. all elements in are of the same class).

In ID3, entropy is calculated for each remaining attribute. The attribute with the smallest entropy is used to split the set on this iteration. The higher the entropy, the higher the potential to improve the classification here.

Information gain

Information gain is the measure of the difference in entropy from before to after the set is split on an attribute . In other words, how much uncertainty in was reduced after splitting set on attribute .

Where,

In ID3, information gain can be calculated (instead of entropy) for each remaining attribute. The attribute with the largest information gain is used to split the set on this iteration.

See also

References

  1. Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81–106
  2. Taggart, Allison J; DeSimone, Alec M; Shih, Janice S; Filloux, Madeleine E; Fairbrother, William G (2012-06-17). "Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo". Nature structural & molecular biology. 19 (7): 719–721. ISSN 1545-9993. PMC 3465671Freely accessible. PMID 22705790. doi:10.1038/nsmb.2327.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.