Hyperbolic tetrahedral-octahedral honeycomb

Tetrahedron-octahedron honeycomb
TypeCompact uniform honeycomb
Semiregular honeycomb
Schläfli symbol{(3,4,3,3)} or {(3,3,4,3)}
Coxeter diagram or or
Cells{3,3}
{3,4}
r{3,3}
Facestriangular {3}
Vertex figure
rhombicuboctahedron
Coxeter group[(4,3,3,3)]
PropertiesVertex-transitive, edge-transitive

In the geometry of hyperbolic 3-space, the tetrahedron-octahedron honeycomb is a compact uniform honeycomb, constructed from octahedron and tetrahedron cells, in a rhombicuboctahedron vertex figure.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

It represents a semiregular honeycomb as defined by all regular cells, although from the Wythoff construction, rectified tetrahedral r{3,3}, becomes the regular octahedron {3,4}.

Images

Wide-angle perspective view

Centered on octahedron

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.