Hurwitz matrix
In mathematics, a Hurwitz matrix, or Routh–Hurwitz matrix, in engineering stability matrix, is a structured real square matrix constructed with coefficients of a real polynomial.
Hurwitz matrix and the Hurwitz stability criterion
Namely, given a real polynomial
the square matrix
is called Hurwitz matrix corresponding to the polynomial . It was established by Adolf Hurwitz in 1895 that a real polynomial is stable (that is, all its roots have strictly negative real part) if and only if all the leading principal minors of the matrix are positive:
and so on. The minors are called the Hurwitz determinants.
Hurwitz stable matrices
In engineering and stability theory, a square matrix is called stable matrix (or sometimes Hurwitz matrix) if every eigenvalue of has strictly negative real part, that is,
for each eigenvalue . is also called a stability matrix, because then the differential equation
is asymptotically stable, that is, as
If is a (matrix-valued) transfer function, then is called Hurwitz if the poles of all elements of have negative real part. Note that it is not necessary that for a specific argument be a Hurwitz matrix — it need not even be square. The connection is that if is a Hurwitz matrix, then the dynamical system
has a Hurwitz transfer function.
Any hyperbolic fixed point (or equilibrium point) of a continuous dynamical system is locally asymptotically stable if and only if the Jacobian of the dynamical system is Hurwitz stable at the fixed point.
The Hurwitz stability matrix is a crucial part of control theory. A system is stable if its control matrix is a Hurwitz matrix. The negative real components of the eigenvalues of the matrix represent negative feedback. Similarly, a system is inherently unstable if any of the eigenvalues have positive real components, representing positive feedback.
See also
References
- Hurwitz, A. (1895). "Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt". Mathematische Annalen, Leipzig (Nr. 46): 273–284.
- Gantmacher, F.R. (1959). "Applications of the Theory of Matrices". Interscience, New York. 641 (9): 1–8.
- Hassan K. Khalil (2002). Nonlinear Systems. Prentice Hall.
- Siegfried H. Lehnigk, On the Hurwitz matrix, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), May 1970
- Bernard A. Asner, Jr., On the Total Nonnegativity of the Hurwitz Matrix, SIAM Journal on Applied Mathematics, Vol. 18, No. 2 (Mar., 1970)
- Dimitar K. Dimitrov and Juan Manuel Peña, Almost strict total positivity and a class of Hurwitz polynomials, Journal of Approximation Theory, Volume 132, Issue 2 (February 2005)
This article incorporates material from Hurwitz matrix on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.