Hsp20

Hsp20/alpha crystallin family
Identifiers
Symbol HSP20
Pfam PF00011
InterPro IPR002068
PROSITE PDOC00791
SCOP 1shs
SUPERFAMILY 1shs
CDD cd06464

The heat shock protein Hsp20 family, also known as small heat shock proteins (sHSPs), is a family of heat shock proteins.

Prokaryotic and eukaryotic organisms respond to heat shock or other environmental stress by inducing the synthesis of proteins collectively known as heat-shock proteins (hsp).[1] Amongst them is a family of proteins with an average molecular weight of 20 kDa, known as the hsp20 proteins.[2] These seem to act as protein chaperones that can protect other proteins against heat-induced denaturation and aggregation. Hsp20 proteins seem to form large heterooligomeric aggregates. Structurally, this family is characterised by the presence of a conserved C-terminal domain, alpha-crystallin domain, of about 100 residues. Recently, small heat shock proteins (sHSPs) were found in marine viruses (cyanophages).[3]

Function and regulation

Hsp20, like all heat shock proteins, is in abundance when cells are under stressed conditions.[4] Hsp20 is known to be expressed in many human tissues, including the brain and heart.[5] Hsp20 has been studied extensively in cardiac myocytes and is known to act as a chaperon protein, binding to protein kinase 1 (PDK1) and allowing its nuclear transport.[6] In addition, the phosphorylation of hsp20 has been shown to effect the structure of cells cytoskeletons.[7] Due to hsp20 commonly forming dimers with itself when heated, its function of chaperoning can be greatly affected.[8]

Humam small heat shock proteins

References

  1. Lindquist S, Craig EA (1988). "The heat-shock proteins". Annu. Rev. Genet. 22: 631–677. PMID 2853609. doi:10.1146/annurev.ge.22.120188.003215.
  2. Merck KB, de Jong WW, Bloemendal H, Groenen PJ (1994). "Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology". Eur. J. Biochem. 225 (1): 1–9. PMID 7925426. doi:10.1111/j.1432-1033.1994.00001.x.
  3. Maaroufi H, Tanguay RM (2013). "Analysis and phylogeny of small heat shock proteins from marine viruses and their cyanobacteria host.". PLoS ONE. 8 (11): e81207. PMC 3827213Freely accessible. PMID 24265841. doi:10.1371/journal.pone.0081207.
  4. LI, D.C.; Lan, Fan; Chen, Dian-Fu; Yang, Wei-Jun; Lu, Bo. "Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2". Cell Stress Chaperones. 17: 103–8. PMC 3227843Freely accessible. PMID 21853411. doi:10.1007/s12192-011-0289-z.
  5. G.C, Fan; G, Chu; EG, Kranies (May 2005). "Hsp20 and its cardioprotection". Trends Cardiovasc. Med. 15: 138–41. PMID 16099377. doi:10.1016/j.tcm.2005.05.004.
  6. Yan Sin, Yuan; Currie, Susan; P Martin, Lauren; Wills, Tamara; S Baillie, George. "Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D 1 (PKD1) during cardiac hypertrophy". Cell Commun Signal. 13: 16. PMC 4356135Freely accessible. PMID 25889640. doi:10.1186/s12964-015-0094-x.
  7. M. Dreiza, Catherine; M. Brophy, Colleen; Komalavilas, Padmini; J. Furnish, Elizabeth; Joshi, Lokesh; A. Pallero, Manuel; E. Murphy-Ullrich, Joanne; von Rechenberg, Moritz; J. Ho, Yew-Seng; Richardson, Bonnie; Xu, Nafei; Zhen, Yuejun; M. Peltier, John; Panitch, Alyssa. "Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics". fasebj.org. The FASEB Journal. Retrieved November 6, 2016.
  8. van Montfort, RL; Basha, E; Friedrich, KL; Slingsby, C; Vierling, E. "Crystal structure and assembly of a eukaryotic small heat shock protein". http://europepmc.org. Europe PMC. Retrieved November 6, 2016. External link in |website= (help)

This article incorporates text from the public domain Pfam and InterPro IPR002068

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.