Holomorphically convex hull

In mathematics, more precisely in complex analysis, the holomorphically convex hull of a given compact set in the n-dimensional complex space Cn is defined as follows.

Let be a domain (an open and connected set), or alternatively for a more general definition, let be an dimensional complex analytic manifold. Further let stand for the set of holomorphic functions on For a compact set , the holomorphically convex hull of is

One obtains a narrower concept of polynomially convex hull by taking instead to be the set of complex-valued polynomial functions on G. The polynomially convex hull contains the holomorphically convex hull.

The domain is called holomorphically convex if for every compact in , is also compact in . Sometimes this is just abbreviated as holomorph-convex.

When , any domain is holomorphically convex since then is the union of with the relatively compact components of . Also, being holomorphically convex is the same as being a domain of holomorphy (The Cartan–Thullen theorem). These concepts are more important in the case n > 1 of several complex variables.

See also

References

This article incorporates material from Holomorphically convex on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.