Hilbert's program

In mathematics, Hilbert's program, formulated by German mathematician David Hilbert in the early part of the 20th century, was a proposed solution to the foundational crisis of mathematics, when early attempts to clarify the foundations of mathematics were found to suffer from paradoxes and inconsistencies. As a solution, Hilbert proposed to ground all existing theories to a finite, complete set of axioms, and provide a proof that these axioms were consistent. Hilbert proposed that the consistency of more complicated systems, such as real analysis, could be proven in terms of simpler systems. Ultimately, the consistency of all of mathematics could be reduced to basic arithmetic.

Gödel's incompleteness theorems, published in 1931, showed that Hilbert's program was unattainable for key areas of mathematics. In his first theorem, Gödel showed that any consistent system with a computable set of axioms which is capable of expressing arithmetic can never be complete: it is possible to construct a statement that can be shown to be true, but that cannot be derived from the formal rules of the system. In his second theorem, he showed that such a system could not prove its own consistency, so it certainly cannot be used to prove the consistency of anything stronger with certainty. This refuted Hilbert's assumption that a finitistic system could be used to prove the consistency of itself, and therefore anything else.

Statement of Hilbert's Program

The main goal of Hilbert's program was to provide secure foundations for all mathematics. In particular this should include:

Gödel's Incompleteness Theorems

Kurt Gödel showed that most of the goals of Hilbert's program were impossible to achieve, at least if interpreted in the most obvious way. Gödel's second incompleteness theorem shows that any consistent theory powerful enough to encode addition and multiplication of integers cannot prove its own consistency. This presents a challenge to Hilbert's program:

Hilbert's program after Gödel

Many current lines of research in mathematical logic, proof theory and reverse mathematics can be viewed as natural continuations of Hilbert's original program. Much of it can be salvaged by changing its goals slightly (Zach 2005), and with the following modifications some of it was successfully completed:

See also

References


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.