Protein dimer

Cartoon diagram of a dimer of Escherichia coli galactose-1-phosphate uridylyltransferase (GALT) in complex with UDP-galactose (stick models). Potassium, zinc, and iron ions are visible as purple, gray, and bronze-colored spheres respectively.

In biochemistry, a dimer is a macromolecular complex formed by two, usually non-covalently bound, macromolecules such as proteins or nucleic acids. (The word dimer has roots meaning "two parts", di- + -mer.) It is a quaternary structure of a protein.

A homodimer is formed by two identical molecules (a process called homodimerisation). A heterodimer is formed by two different macromolecules (called heterodimerisation).

Most dimers in biochemistry are not connected by covalent bonds. An example of a non-covalent heterodimer is the enzyme reverse transcriptase, which is composed of two different amino acid chains.[1] An exception is dimers that are linked by disulfide bridges such as the homodimeric protein NEMO.[2]

Some proteins contain specialized domains to ensure dimerization (dimerization domains) and specificity.[3]

Examples

See also

References

  1. Sluis-Cremer N, Hamamouch N, San Félix A, Velazquez S, Balzarini J, Camarasa MJ (August 2006). "Structure-activity relationships of [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]- 3'-spiro-5' '-(4' '-amino-1' ',2' '-oxathiole-2' ',2' '-dioxide)thymine derivatives as inhibitors of HIV-1 reverse transcriptase dimerization". J. Med. Chem. 49 (16): 4834–41. PMID 16884295. doi:10.1021/jm0604575.
  2. Herscovitch M, Comb W, Ennis T, Coleman K, Yong S, Armstead B, Kalaitzidis D, Chandani S, Gilmore TD (February 2008). "Intermolecular disulfide bond formation in the NEMO dimer requires Cys54 and Cys347". Biochemical and Biophysical Research Communications. 367 (1): 103–8. PMC 2277332Freely accessible. PMID 18164680. doi:10.1016/j.bbrc.2007.12.123.
  3. Amoutzias, Grigoris D.; Robertson, David L.; Van de Peer, Yves; Oliver, Stephen G. (2008-05-01). "Choose your partners: dimerization in eukaryotic transcription factors". Trends in Biochemical Sciences. 33 (5): 220–229. ISSN 0968-0004. PMID 18406148. doi:10.1016/j.tibs.2008.02.002.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.