H&E stain

Histologic specimen of human lung tissue stained with hematoxylin (violets) and eosin (reds)
Black & White photograph of a histologic specimen of bird lung infested by Toxoplasma gondii, stained with hematoxylin and eosin

Hematoxylin and eosin stain or haematoxylin and eosin stain (H&E stain or HE stain) is one of the principal stains in histology. It is the most widely used stain in medical diagnosis and is often the gold standard; for example when a pathologist looks at a biopsy of a suspected cancer, the histological section is likely to be stained with H&E and termed "H&E section", "H+E section", or "HE section". A combination of hematoxylin and eosin, it produces blues, violets, and reds.

Principle

The staining method involves application of hemalum, a complex formed from aluminum ions and hematein (an oxidation product of hematoxylin). Hemalum colors nuclei of cells (and a few other objects, such as keratohyalin granules and calcified material) blue. The nuclear staining is followed by counterstaining with an aqueous or alcoholic solution of eosin Y, which colors eosinophilic structures in various shades of red, pink and orange.

The staining of nuclei by hemalum is ordinarily due to binding of the dye-metal complex to DNA, but nuclear staining can be obtained after extraction of DNA from tissue sections. The mechanism is different from that of nuclear staining by basic (cationic) dyes such as thionine or toluidine blue. Staining by basic dyes occurs only from solutions that are less acidic than hemalum, and it is prevented by prior chemical or enzymatic extraction of nucleic acids. There is evidence to indicate that coordinate bonds, similar to those that hold aluminium and hematein together, bind the hemalum complex to DNA and to carboxy groups of proteins in the nuclear chromatin.

The eosinophilic structures are generally composed of intracellular or extracellular protein. The Lewy bodies and Mallory bodies are examples of eosinophilic structures. Most of the cytoplasm is eosinophilic. Red blood cells are stained intensely red.

The structures do not have to be acidic or basic to be called basophilic and eosinophilic; the terminology is based on the affinity of cellular components for the dyes. Other colors, e.g. yellow and brown, can be present in the sample; they are caused by intrinsic pigments, e.g. melanin. Some structures do not stain well. Basal laminae need to be stained by PAS stain or some silver stains, if they have to be well visible. Reticular fibers also require silver stain. Hydrophobic structures also tend to remain clear; these are usually rich in fats, e.g. adipocytes, myelin around neuron axons, and Golgi apparatus membranes.

Overview

So, in optical microscopy we can observe :[1]

See also

References

Protocol

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.