HV 2112
| |
Observation data Epoch J2000.0 Equinox J2000.0 | |
---|---|
Constellation | Tucana |
Right ascension | 01h 10m 03.858s[1] |
Declination | −72° 36′ 52.62″[1] |
Apparent magnitude (V) | 12.7 to below 16.7[2][3] |
Characteristics | |
Spectral type | M5.5 II (M3e – M7.5[4]) |
Apparent magnitude (J) | 10.020[1] |
Apparent magnitude (H) | 9.100[1] |
Apparent magnitude (K) | 8.723[1] |
U−B color index | +0.33[5] |
B−V color index | +1.80[5] |
Variable type | Mira?[6] |
Astrometry | |
Radial velocity (Rv) | 157[7] km/s |
Proper motion (μ) | RA: 2.8 ± 2.3[8] mas/yr Dec.: −9.8 ± 2.3[8] mas/yr |
Absolute magnitude (MV) | −5.2[7] |
Details[7] | |
Luminosity | 107,000 L☉ |
Surface gravity (log g) | 0.0 cgs |
Temperature | 3,450 K |
Other designations | |
Database references | |
SIMBAD | data |
HV 2112 is a cool luminous variable star in the direction of the Small Magellanic Cloud. It is considered to be the most likely candidate for a Thorne–Żytkow object, although it may simply be an S-type star in our own galaxy.
Discovery
HV 2112 was first reported as a variable star in 1908, by Henrietta Leavitt. At the time it was identified as Harvard no. 2112. No period was given, but it was reported to be "probably long". The magnitude range was given as 13.7 to fainter than 16.5, from photographic plates.[9]
In 1966, analysis of Magellanic Cloud variable stars showed that HV 2112 had a photographic magnitude range from 13.0 to below 17.8. It was classified as a long-period variable, now known as a Mira variable, on the basis of its large amplitude and reasonably regular light variations.[10]
Thorne–Żytkow object
HV 2112 was identified as a possible Thorne–Żytkow object (TZO) using the Magellan Clay telescope in Chile. To find candidate TZOs Emily Levesque used the Apache Point Observatory to examine 24 red supergiant stars in the Milky Way, and the Magellan Clay telescope to look at 16 in the Large Magellanic Cloud and 22 in the Small Magellanic Cloud. The star contains unusually high levels of the elements lithium, molybdenum and rubidium that are expected only to be produced by TZOs.[7]
AGB star
HV 2112 has generally been treated as a very luminous asymptotic giant branch (AGB) star, a red giant that has exhausted its core helium and is in the last stages of its evolution. Large-amplitude class-M variables and stars with spectral types later than about M5 are almost always AGB stars rather than red supergiants. These stars have a theoretical maximum luminosity and, at the distance of the SMC, HV 2112 was typically calculated to be slightly more luminous than this limit at around 60,000 L☉.[4]
More modern calculations gave higher values for the luminosity of HV 2112 above 100,000 L☉, which is unambiguously too luminous to be an AGB star. These calculations included an interstellar extinction value of 0.4 magnitudes which is slightly higher than average for the SMC.[7]
Analysis of the proper motion of HV 2112 shows that it is unusually large for an SMC star, although the radial velocity is consistent with other SMC objects. The proper motion of around 10 mas/year would indicate a space velocity of 3,100 km/sec at the distance of the SMC, well above its escape velocity. A more likely explanation of such a proper motion would be that HV 2112 lies about 3,000 parsecs away in our own galaxy. It would then be around 1,000 L☉ rather than 100,000 L☉ and so a typical AGB star. The over-abundance of heavy elements would then be explained as pollution from an unseen companion, producing an extrinsic S-type star.[8]
Binary star
HV 2112 is listed in the OGLE catalogue as an unresolved multiple star.[11]
References
- 1 2 3 4 5 Cutri, R. M.; Skrutskie, M. F.; Van Dyk, S.; Beichman, C. A.; Carpenter, J. M.; Chester, T.; Cambresy, L.; Evans, T.; Fowler, J.; et al. (2003). "VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003)". VizieR On-line Data Catalog: II/246. Originally published in: 2003yCat.2246....0C. 2246. Bibcode:2003yCat.2246....0C.
- ↑ Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J.-L.; Dong, Subo; Shields, J. V.; Will, D.; et al. (2017). "The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0". 1706: arXiv:1706.07060. Bibcode:2017arXiv170607060K. arXiv:1706.07060 .
- ↑ Shappee, B. J.; Prieto, J. L.; Grupe, D.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; et al. (2014). "The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617". The Astrophysical Journal. 788: 48. Bibcode:2014ApJ...788...48S. arXiv:1310.2241 . doi:10.1088/0004-637X/788/1/48.
- 1 2 Wood, P. R.; Bessell, M. S.; Fox, M. W. (1983). "Long-period variables in the Magellanic Clouds – Supergiants, AGB stars, supernova precursors, planetary nebula precursors, and enrichment of the interstellar medium". Astrophysical Journal. 272: 99. Bibcode:1983ApJ...272...99W. doi:10.1086/161265.
- 1 2 Boyer, Martha L.; Srinivasan, Sundar; Van Loon, Jacco Th.; McDonald, Iain; Meixner, Margaret; Zaritsky, Dennis; Gordon, Karl D.; Kemper, F.; Babler, Brian; et al. (2011). "Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). II. Cool Evolved Stars". The Astronomical Journal. 142 (4): 103. Bibcode:2011AJ....142..103B. arXiv:1106.5026 . doi:10.1088/0004-6256/142/4/103.
- 1 2 Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007–2013)". VizieR On-line Data Catalog: B/gcvs. Originally published in: 2009yCat....102025S. 1. Bibcode:2009yCat....102025S.
- 1 2 3 4 5 Levesque, Emily (1 September 2014). "Discovery of a Thorne-̇Żytkow object candidate in the Small Magellanic Cloud". Monthly Notices of the Royal Astronomical Society: Letters. 443: L94. Bibcode:2014MNRAS.443L..94L. arXiv:1406.0001 . doi:10.1093/mnrasl/slu080.
- 1 2 3 MacCarone, Thomas J.; De Mink, Selma E. (2016). "Large proper motion of the Thorne-Żytkow object candidate HV 2112 reveals its likely nature as foreground Galactic S-star". Monthly Notices of the Royal Astronomical Society: Letters. 458: L1. Bibcode:2016MNRAS.458L...1M. arXiv:1601.05455 . doi:10.1093/mnrasl/slw004.
- ↑ Leavitt, Henrietta S. (1908). "1777 variables in the Magellanic Clouds". Annals of Harvard College Observatory. 60: 87. Bibcode:1908AnHar..60...87L.
- ↑ Payne-Gaposchkin, Cecilia; Gaposchkin, Sergei (1966). "Variable Stars in the Small Magellanic Cloud". Smithsonian Contributions to Astrophysics. 9: 1. Bibcode:1966SCoA....9....1P.
- ↑ González-Fernández, Carlos; Dorda, Ricardo; Negueruela, Ignacio; Marco, Amparo (2015). "A new survey of cool supergiants in the Magellanic Clouds". Astronomy & Astrophysics. 578: A3. Bibcode:2015A&A...578A...3G. arXiv:1504.00003 . doi:10.1051/0004-6361/201425362.
External links
- "HV 2112 light curve". ASAS-SN. Retrieved 2017-07-12.
- "First Thorne-Zytkow Object Found 200,000 Light-Years Away". 5 June 2014. Retrieved 30 June 2014.
- Eller, Cynthia (30 June 2014). "Kip Thorne discusses first discovery of Thorne-Zytkow object". Retrieved 30 June 2014.