GRB2

GRB2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesGRB2, ASH, EGFRBP-Grb3-3, MST084, MSTP084, NCKAP2, growth factor receptor bound protein 2
External IDsOMIM: 108355 MGI: 95805 HomoloGene: 1576 GeneCards: GRB2
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

2885

14784

Ensembl

ENSG00000177885

ENSMUSG00000059923

UniProt

P62993

Q60631

RefSeq (mRNA)

NM_203506
NM_002086

NM_008163
NM_001313936
NM_001313937

RefSeq (protein)

NP_002077
NP_987102

NP_001300865
NP_001300866
NP_032189

Location (UCSC)Chr 17: 75.32 – 75.41 MbChr 11: 115.64 – 115.71 Mb
PubMed search[1][2]
Wikidata
View/Edit HumanView/Edit Mouse

Growth factor receptor-bound protein 2 also known as Grb2 is an adaptor protein involved in signal transduction/cell communication. In humans, the GRB2 protein is encoded by the GRB2 gene.[3][4]

The protein encoded by this gene binds receptors such as the epidermal growth factor receptor and contains one SH2 domain and two SH3 domains. Its two SH3 domains direct complex formation with proline-rich regions of other proteins, and its SH2 domain binds tyrosine phosphorylated sequences. This gene is similar to the sem-5 gene of Caenorhabditis elegans, which is involved in the signal transduction pathway. Two alternatively spliced transcript variants encoding different isoforms have been found for this gene.[5]

Function and expression

Grb2 is widely expressed and is essential for multiple cellular functions. Inhibition of Grb2 function impairs developmental processes in various organisms and blocks transformation and proliferation of various cell types. It is thus not surprising that targeted gene disruption of Grb2 in mice is lethal at an early embryonic stage. Grb2 is best known for its ability to link the epidermal growth factor receptor tyrosine kinase to the activation of Ras and its downstream kinases, ERK1,2. Grb2 is composed of an SH2 domain flanked on each side by an SH3 domain. Grb2 has two closely related proteins with similar domain organizations, Gads and Grap. Gads and Grap are expressed specifically in hematopoietic cells and function in the coordination of tyrosine kinase mediated signal transduction.

Domains

The SH2 domain of Grb2 binds to phosphorylated tyrosine-containing peptides on receptors or scaffold proteins with a preference for pY-X-N-X, where X is generally a hydrophobic residue such as valine (see ).

The N-terminal SH3 domain binds to proline-rich peptides and can bind to the Ras-guanine exchange factor SOS.

The C-terminal SH3 domain binds to peptides conforming to a P-X-I/L/V/-D/N-R-X-X-K-P motif that allows it to specifically bind to proteins such as Gab-1.[6]

Interactions

Grb2 has been shown to interact with:

See also

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. Matuoka K, Shibata M, Yamakawa A, Takenawa T (Oct 1992). "Cloning of ASH, a ubiquitous protein composed of one Src homology region (SH) 2 and two SH3 domains, from human and rat cDNA libraries". Proceedings of the National Academy of Sciences of the United States of America. 89 (19): 9015–9. PMC 50055Freely accessible. PMID 1384039. doi:10.1073/pnas.89.19.9015.
  4. 1 2 Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J (Aug 1992). "The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling". Cell. 70 (3): 431–42. PMID 1322798. doi:10.1016/0092-8674(92)90167-B.
  5. "Entrez Gene: GRB2 growth factor receptor-bound protein 2".
  6. Berry DM, Nash P, Liu SK, Pawson T, McGlade CJ (Aug 2002). "A high-affinity Arg-X-X-Lys SH3 binding motif confers specificity for the interaction between Gads and SLP-76 in T cell signaling". Current Biology. 12 (15): 1336–41. PMID 12176364. doi:10.1016/S0960-9822(02)01038-2.
  7. Poghosyan Z, Robbins SM, Houslay MD, Webster A, Murphy G, Edwards DR (Feb 2002). "Phosphorylation-dependent interactions between ADAM15 cytoplasmic domain and Src family protein-tyrosine kinases". The Journal of Biological Chemistry. 277 (7): 4999–5007. PMID 11741929. doi:10.1074/jbc.M107430200.
  8. Warmuth M, Bergmann M, Priess A, Häuslmann K, Emmerich B, Hallek M (Dec 1997). "The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr". The Journal of Biological Chemistry. 272 (52): 33260–70. PMID 9407116. doi:10.1074/jbc.272.52.33260.
  9. Ren R, Ye ZS, Baltimore D (Apr 1994). "Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites". Genes & Development. 8 (7): 783–95. PMID 7926767. doi:10.1101/gad.8.7.783.
  10. VanderNoot VA, Fitzpatrick FA (Sep 1995). "Competitive binding assay of src homology domain 3 interactions between 5-lipoxygenase and growth factor receptor binding protein 2". Analytical Biochemistry. 230 (1): 108–14. PMID 8585605. doi:10.1006/abio.1995.1444.
  11. Lepley RA, Fitzpatrick FA (Sep 1994). "5-Lipoxygenase contains a functional Src homology 3-binding motif that interacts with the Src homology 3 domain of Grb2 and cytoskeletal proteins". The Journal of Biological Chemistry. 269 (39): 24163–8. PMID 7929073.
  12. Fu C, Turck CW, Kurosaki T, Chan AC (Jul 1998). "BLNK: a central linker protein in B cell activation". Immunity. 9 (1): 93–103. PMID 9697839. doi:10.1016/S1074-7613(00)80591-9.
  13. Engels N, Wollscheid B, Wienands J (Jul 2001). "Association of SLP-65/BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Ig-alpha". European Journal of Immunology. 31 (7): 2126–34. PMID 11449366. doi:10.1002/1521-4141(200107)31:7<2126::aid-immu2126>3.0.co;2-o.
  14. Fusaki N, Tomita S, Wu Y, Okamoto N, Goitsuka R, Kitamura D, Hozumi N (May 2000). "BLNK is associated with the CD72/SHP-1/Grb2 complex in the WEHI231 cell line after membrane IgM cross-linking". European Journal of Immunology. 30 (5): 1326–30. PMID 10820378. doi:10.1002/(sici)1521-4141(200005)30:5<1326::aid-immu1326>3.0.co;2-q.
  15. Wienands J, Schweikert J, Wollscheid B, Jumaa H, Nielsen PJ, Reth M (Aug 1998). "SLP-65: a new signaling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation". The Journal of Experimental Medicine. 188 (4): 791–5. PMC 2213353Freely accessible. PMID 9705962. doi:10.1084/jem.188.4.791.
  16. 1 2 Angers-Loustau A, Côté JF, Charest A, Dowbenko D, Spencer S, Lasky LA, Tremblay ML (Mar 1999). "Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts". The Journal of Cell Biology. 144 (5): 1019–31. PMC 2148201Freely accessible. PMID 10085298. doi:10.1083/jcb.144.5.1019.
  17. Wang X, Weng LP, Yu Q (May 2000). "Specific inhibition of FGF-induced MAPK activation by the receptor-like protein tyrosine phosphatase LAR". Oncogene. 19 (19): 2346–53. PMID 10822386. doi:10.1038/sj.onc.1203558.
  18. 1 2 3 Million RP, Harakawa N, Roumiantsev S, Varticovski L, Van Etten RA (Jun 2004). "A direct binding site for Grb2 contributes to transformation and leukemogenesis by the Tel-Abl (ETV6-Abl) tyrosine kinase". Molecular and Cellular Biology. 24 (11): 4685–95. PMC 416425Freely accessible. PMID 15143164. doi:10.1128/MCB.24.11.4685-4695.2004.
  19. 1 2 3 Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T (Feb 1994). "Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway". The EMBO Journal. 13 (4): 764–73. PMC 394874Freely accessible. PMID 8112292.
  20. Million RP, Van Etten RA (Jul 2000). "The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase". Blood. 96 (2): 664–70. PMID 10887132.
  21. Bai RY, Jahn T, Schrem S, Munzert G, Weidner KM, Wang JY, Duyster J (Aug 1998). "The SH2-containing adapter protein GRB10 interacts with BCR-ABL". Oncogene. 17 (8): 941–8. PMID 9747873. doi:10.1038/sj.onc.1202024.
  22. Ma G, Lu D, Wu Y, Liu J, Arlinghaus RB (May 1997). "Bcr phosphorylated on tyrosine 177 binds Grb2". Oncogene. 14 (19): 2367–72. PMID 9178913. doi:10.1038/sj.onc.1201053.
  23. Maru Y, Peters KL, Afar DE, Shibuya M, Witte ON, Smithgall TE (Feb 1995). "Tyrosine phosphorylation of BCR by FPS/FES protein-tyrosine kinases induces association of BCR with GRB-2/SOS". Molecular and Cellular Biology. 15 (2): 835–42. PMC 231961Freely accessible. PMID 7529874.
  24. Karoor V, Wang L, Wang HY, Malbon CC (Dec 1998). "Insulin stimulates sequestration of beta-adrenergic receptors and enhanced association of beta-adrenergic receptors with Grb2 via tyrosine 350". The Journal of Biological Chemistry. 273 (49): 33035–41. PMID 9830057. doi:10.1074/jbc.273.49.33035.
  25. Ponzetto C, Zhen Z, Audero E, Maina F, Bardelli A, Basile ML, Giordano S, Narsimhan R, Comoglio P (Jun 1996). "Specific uncoupling of GRB2 from the Met receptor. Differential effects on transformation and motility". The Journal of Biological Chemistry. 271 (24): 14119–23. PMID 8662889. doi:10.1074/jbc.271.24.14119.
  26. Liang Q, Mohan RR, Chen L, Wilson SE (Jul 1998). "Signaling by HGF and KGF in corneal epithelial cells: Ras/MAP kinase and Jak-STAT pathways". Investigative Ophthalmology & Visual Science. 39 (8): 1329–38. PMID 9660480.
  27. 1 2 Ettenberg SA, Keane MM, Nau MM, Frankel M, Wang LM, Pierce JH, Lipkowitz S (Mar 1999). "cbl-b inhibits epidermal growth factor receptor signaling". Oncogene. 18 (10): 1855–66. PMID 10086340. doi:10.1038/sj.onc.1202499.
  28. Lavagna-Sévenier C, Marchetto S, Birnbaum D, Rosnet O (Jun 1998). "The CBL-related protein CBLB participates in FLT3 and interleukin-7 receptor signal transduction in pro-B cells". The Journal of Biological Chemistry. 273 (24): 14962–7. PMID 9614102. doi:10.1074/jbc.273.24.14962.
  29. Elly C, Witte S, Zhang Z, Rosnet O, Lipkowitz S, Altman A, Liu YC (Feb 1999). "Tyrosine phosphorylation and complex formation of Cbl-b upon T cell receptor stimulation". Oncogene. 18 (5): 1147–56. PMID 10022120. doi:10.1038/sj.onc.1202411.
  30. 1 2 Feng GS, Ouyang YB, Hu DP, Shi ZQ, Gentz R, Ni J (May 1996). "Grap is a novel SH3-SH2-SH3 adaptor protein that couples tyrosine kinases to the Ras pathway". The Journal of Biological Chemistry. 271 (21): 12129–32. PMID 8647802. doi:10.1074/jbc.271.21.12129.
  31. De Sepulveda P, Okkenhaug K, Rose JL, Hawley RG, Dubreuil P, Rottapel R (Feb 1999). "Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation". The EMBO Journal. 18 (4): 904–15. PMC 1171183Freely accessible. PMID 10022833. doi:10.1093/emboj/18.4.904.
  32. Thömmes K, Lennartsson J, Carlberg M, Rönnstrand L (Jul 1999). "Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor". The Biochemical Journal. 341 (1): 211–6. PMC 1220349Freely accessible. PMID 10377264. doi:10.1042/0264-6021:3410211.
  33. Poe JC, Fujimoto M, Jansen PJ, Miller AS, Tedder TF (Jun 2000). "CD22 forms a quaternary complex with SHIP, Grb2, and Shc. A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux". The Journal of Biological Chemistry. 275 (23): 17420–7. PMID 10748054. doi:10.1074/jbc.M001892200.
  34. Otipoby KL, Draves KE, Clark EA (Nov 2001). "CD22 regulates B cell receptor-mediated signals via two domains that independently recruit Grb2 and SHP-1". The Journal of Biological Chemistry. 276 (47): 44315–22. PMID 11551923. doi:10.1074/jbc.M105446200.
  35. Okkenhaug K, Rottapel R (Aug 1998). "Grb2 forms an inducible protein complex with CD28 through a Src homology 3 domain-proline interaction". The Journal of Biological Chemistry. 273 (33): 21194–202. PMID 9694876. doi:10.1074/jbc.273.33.21194.
  36. Nunès JA, Truneh A, Olive D, Cantrell DA (Jan 1996). "Signal transduction by CD28 costimulatory receptor on T cells. B7-1 and B7-2 regulation of tyrosine kinase adaptor molecules". The Journal of Biological Chemistry. 271 (3): 1591–8. PMID 8576157. doi:10.1074/jbc.271.3.1591.
  37. Sugiyama Y, Tomoda K, Tanaka T, Arata Y, Yoneda-Kato N, Kato J (Apr 2001). "Direct binding of the signal-transducing adaptor Grb2 facilitates down-regulation of the cyclin-dependent kinase inhibitor p27Kip1". The Journal of Biological Chemistry. 276 (15): 12084–90. PMID 11278754. doi:10.1074/jbc.M010811200.
  38. Riordan SM, Lidder S, Williams R, Skouteris GG (Sep 2000). "The beta-subunit of the hepatocyte growth factor/scatter factor (HGF/SF) receptor phosphorylates and associates with CrkII: expression of CrkII enhances HGF/SF-induced mitogenesis". The Biochemical Journal. 350 (3): 925–32. PMC 1221328Freely accessible. PMID 10970810. doi:10.1042/0264-6021:3500925.
  39. Matsuda M, Ota S, Tanimura R, Nakamura H, Matuoka K, Takenawa T, Nagashima K, Kurata T (Jun 1996). "Interaction between the amino-terminal SH3 domain of CRK and its natural target proteins". The Journal of Biological Chemistry. 271 (24): 14468–72. PMID 8662907. doi:10.1074/jbc.271.24.14468.
  40. 1 2 Okada S, Pessin JE (Oct 1996). "Interactions between Src homology (SH) 2/SH3 adapter proteins and the guanylnucleotide exchange factor SOS are differentially regulated by insulin and epidermal growth factor". The Journal of Biological Chemistry. 271 (41): 25533–8. PMID 8810325. doi:10.1074/jbc.271.41.25533.
  41. 1 2 Erdreich-Epstein A, Liu M, Kant AM, Izadi KD, Nolta JA, Durden DL (Apr 1999). "Cbl functions downstream of Src kinases in Fc gamma RI signaling in primary human macrophages". Journal of Leukocyte Biology. 65 (4): 523–34. PMID 10204582.
  42. 1 2 3 Wong A, Lamothe B, Lee A, Schlessinger J, Lax I, Li A (May 2002). "FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl". Proceedings of the National Academy of Sciences of the United States of America. 99 (10): 6684–9. PMC 124463Freely accessible. PMID 11997436. doi:10.1073/pnas.052138899.
  43. 1 2 3 4 5 6 Saci A, Liu WQ, Vidal M, Garbay C, Rendu F, Bachelot-Loza C (May 2002). "Differential effect of the inhibition of Grb2-SH3 interactions in platelet activation induced by thrombin and by Fc receptor engagement". The Biochemical Journal. 363 (Pt 3): 717–25. PMC 1222524Freely accessible. PMID 11964172. doi:10.1042/0264-6021:3630717.
  44. 1 2 3 Liu SK, McGlade CJ (Dec 1998). "Gads is a novel SH2 and SH3 domain-containing adaptor protein that binds to tyrosine-phosphorylated Shc". Oncogene. 17 (24): 3073–82. PMID 9872323. doi:10.1038/sj.onc.1202337.
  45. 1 2 3 Park RK, Erdreich-Epstein A, Liu M, Izadi KD, Durden DL (Dec 1999). "High affinity IgG receptor activation of Src family kinases is required for modulation of the Shc-Grb2-Sos complex and the downstream activation of the nicotinamide adenine dinucleotide phosphate (reduced) oxidase". Journal of Immunology. 163 (11): 6023–34. PMID 10570290.
  46. Jain SK, Langdon WY, Varticovski L (May 1997). "Tyrosine phosphorylation of p120cbl in BCR/abl transformed hematopoietic cells mediates enhanced association with phosphatidylinositol 3-kinase". Oncogene. 14 (18): 2217–28. PMID 9174058. doi:10.1038/sj.onc.1201049.
  47. Robertson H, Langdon WY, Thien CB, Bowtell DD (Nov 1997). "A c-Cbl yeast two hybrid screen reveals interactions with 14-3-3 isoforms and cytoskeletal components". Biochemical and Biophysical Research Communications. 240 (1): 46–50. PMID 9367879. doi:10.1006/bbrc.1997.7608.
  48. Donovan JA, Wange RL, Langdon WY, Samelson LE (Sep 1994). "The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor". The Journal of Biological Chemistry. 269 (37): 22921–4. PMID 8083187.
  49. Gesbert F, Garbay C, Bertoglio J (Feb 1998). "Interleukin-2 stimulation induces tyrosine phosphorylation of p120-Cbl and CrkL and formation of multimolecular signaling complexes in T lymphocytes and natural killer cells". The Journal of Biological Chemistry. 273 (7): 3986–93. PMID 9461587. doi:10.1074/jbc.273.7.3986.
  50. Husson H, Mograbi B, Schmid-Antomarchi H, Fischer S, Rossi B (May 1997). "CSF-1 stimulation induces the formation of a multiprotein complex including CSF-1 receptor, c-Cbl, PI 3-kinase, Crk-II and Grb2". Oncogene. 14 (19): 2331–8. PMID 9178909. doi:10.1038/sj.onc.1201074.
  51. Odai H, Sasaki K, Iwamatsu A, Nakamoto T, Ueno H, Yamagata T, Mitani K, Yazaki Y, Hirai H (Apr 1997). "Purification and molecular cloning of SH2- and SH3-containing inositol polyphosphate-5-phosphatase, which is involved in the signaling pathway of granulocyte-macrophage colony-stimulating factor, erythropoietin, and Bcr-Abl". Blood. 89 (8): 2745–56. PMID 9108392.
  52. Ng C, Jackson RA, Buschdorf JP, Sun Q, Guy GR, Sivaraman J (Mar 2008). "Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates". The EMBO Journal. 27 (5): 804–16. PMC 2265755Freely accessible. PMID 18273061. doi:10.1038/emboj.2008.18.
  53. Mancini A, Niedenthal R, Joos H, Koch A, Trouliaris S, Niemann H, Tamura T (Sep 1997). "Identification of a second Grb2 binding site in the v-Fms tyrosine kinase". Oncogene. 15 (13): 1565–72. PMID 9380408. doi:10.1038/sj.onc.1201518.
  54. Sahni M, Zhou XM, Bakiri L, Schlessinger J, Baron R, Levy JB (Dec 1996). "Identification of a novel 135-kDa Grb2-binding protein in osteoclasts". The Journal of Biological Chemistry. 271 (51): 33141–7. PMID 8955163. doi:10.1074/jbc.271.51.33141.
  55. Miki H, Miura K, Matuoka K, Nakata T, Hirokawa N, Orita S, Kaibuchi K, Takai Y, Takenawa T (Feb 1994). "Association of Ash/Grb-2 with dynamin through the Src homology 3 domain". The Journal of Biological Chemistry. 269 (8): 5489–92. PMID 8119878.
  56. 1 2 Sastry L, Cao T, King CR (Jan 1997). "Multiple Grb2-protein complexes in human cancer cells". International Journal of Cancer. Journal International Du Cancer. 70 (2): 208–13. PMID 9009162. doi:10.1002/(sici)1097-0215(19970117)70:2<208::aid-ijc12>3.0.co;2-e.
  57. Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA, Schlaepfer DD (Mar 2003). "Differential regulation of cell motility and invasion by FAK". The Journal of Cell Biology. 160 (5): 753–67. PMC 2173366Freely accessible. PMID 12615911. doi:10.1083/jcb.200212114.
  58. Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M, Kurata T, Matsuda M (Apr 1996). "DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane". Molecular and Cellular Biology. 16 (4): 1770–6. PMC 231163Freely accessible. PMID 8657152.
  59. Yang B, Jung D, Motto D, Meyer J, Koretzky G, Campbell KP (May 1995). "SH3 domain-mediated interaction of dystroglycan and Grb2". The Journal of Biological Chemistry. 270 (20): 11711–4. PMID 7744812. doi:10.1074/jbc.270.20.11711.
  60. Pratt RL, Kinch MS (Oct 2002). "Activation of the EphA2 tyrosine kinase stimulates the MAP/ERK kinase signaling cascade". Oncogene. 21 (50): 7690–9. PMID 12400011. doi:10.1038/sj.onc.1205758.
  61. 1 2 3 4 Oneyama C, Nakano H, Sharma SV (Mar 2002). "UCS15A, a novel small molecule, SH3 domain-mediated protein-protein interaction blocking drug". Oncogene. 21 (13): 2037–50. PMID 11960376. doi:10.1038/sj.onc.1205271.
  62. 1 2 3 4 5 Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M (Mar 2003). "A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling". Nature Biotechnology. 21 (3): 315–8. PMID 12577067. doi:10.1038/nbt790.
  63. 1 2 Schulze WX, Deng L, Mann M. "Phosphotyrosine interactome of the ErbB-receptor kinase family". Molecular Systems Biology. 1: 2005.0008. PMC 1681463Freely accessible. PMID 16729043. doi:10.1038/msb4100012.
  64. Wong L, Deb TB, Thompson SA, Wells A, Johnson GR (Mar 1999). "A differential requirement for the COOH-terminal region of the epidermal growth factor (EGF) receptor in amphiregulin and EGF mitogenic signaling". The Journal of Biological Chemistry. 274 (13): 8900–9. PMID 10085134. doi:10.1074/jbc.274.13.8900.
  65. Okutani T, Okabayashi Y, Kido Y, Sugimoto Y, Sakaguchi K, Matuoka K, Takenawa T, Kasuga M (Dec 1994). "Grb2/Ash binds directly to tyrosines 1068 and 1086 and indirectly to tyrosine 1148 of activated human epidermal growth factor receptors in intact cells". The Journal of Biological Chemistry. 269 (49): 31310–4. PMID 7527043.
  66. 1 2 Tortora G, Damiano V, Bianco C, Baldassarre G, Bianco AR, Lanfrancone L, Pelicci PG, Ciardiello F (Feb 1997). "The RIalpha subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-receptor". Oncogene. 14 (8): 923–8. PMID 9050991. doi:10.1038/sj.onc.1200906.
  67. Daly RJ, Sanderson GM, Janes PW, Sutherland RL (May 1996). "Cloning and characterization of GRB14, a novel member of the GRB7 gene family". The Journal of Biological Chemistry. 271 (21): 12502–10. PMID 8647858. doi:10.1074/jbc.271.21.12502.
  68. 1 2 Buday L, Egan SE, Rodriguez Viciana P, Cantrell DA, Downward J (Mar 1994). "A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells". The Journal of Biological Chemistry. 269 (12): 9019–23. PMID 7510700.
  69. 1 2 Braverman LE, Quilliam LA (Feb 1999). "Identification of Grb4/Nckbeta, a src homology 2 and 3 domain-containing adapter protein having similar binding and biological properties to Nck". The Journal of Biological Chemistry. 274 (9): 5542–9. PMID 10026169. doi:10.1074/jbc.274.9.5542.
  70. Tauchi T, Feng GS, Shen R, Hoatlin M, Bagby GC, Kabat D, Lu L, Broxmeyer HE (Mar 1995). "Involvement of SH2-containing phosphotyrosine phosphatase Syp in erythropoietin receptor signal transduction pathways". The Journal of Biological Chemistry. 270 (10): 5631–5. PMID 7534299. doi:10.1074/jbc.270.10.5631.
  71. Ong SH, Goh KC, Lim YP, Low BC, Klint P, Claesson-Welsh L, Cao X, Tan YH, Guy GR (Aug 1996). "Suc1-associated neurotrophic factor target (SNT) protein is a major FGF-stimulated tyrosine phosphorylated 90-kDa protein which binds to the SH2 domain of GRB2". Biochemical and Biophysical Research Communications. 225 (3): 1021–6. PMID 8780727. doi:10.1006/bbrc.1996.1288.
  72. Meakin SO, MacDonald JI, Gryz EA, Kubu CJ, Verdi JM (Apr 1999). "The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation". The Journal of Biological Chemistry. 274 (14): 9861–70. PMID 10092678. doi:10.1074/jbc.274.14.9861.
  73. Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I, Schlessinger J (May 1997). "A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway". Cell. 89 (5): 693–702. PMID 9182757. doi:10.1016/s0092-8674(00)80252-4.
  74. Ghadimi MP, Sanzenbacher R, Thiede B, Wenzel J, Jing Q, Plomann M, Borkhardt A, Kabelitz D, Janssen O (May 2002). "Identification of interaction partners of the cytosolic polyproline region of CD95 ligand (CD178)". FEBS Letters. 519 (1-3): 50–8. PMID 12023017. doi:10.1016/s0014-5793(02)02709-6.
  75. Wenzel J, Sanzenbacher R, Ghadimi M, Lewitzky M, Zhou Q, Kaplan DR, Kabelitz D, Feller SM, Janssen O (Dec 2001). "Multiple interactions of the cytosolic polyproline region of the CD95 ligand: hints for the reverse signal transduction capacity of a death factor". FEBS Letters. 509 (2): 255–62. PMID 11741599. doi:10.1016/s0014-5793(01)03174-x.
  76. 1 2 Lewitzky M, Kardinal C, Gehring NH, Schmidt EK, Konkol B, Eulitz M, Birchmeier W, Schaeper U, Feller SM (Mar 2001). "The C-terminal SH3 domain of the adapter protein Grb2 binds with high affinity to sequences in Gab1 and SLP-76 which lack the SH3-typical P-x-x-P core motif". Oncogene. 20 (9): 1052–62. PMID 11314042. doi:10.1038/sj.onc.1204202.
  77. Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ (Feb 1996). "A Grb2-associated docking protein in EGF- and insulin-receptor signalling". Nature. 379 (6565): 560–4. PMID 8596638. doi:10.1038/379560a0.
  78. Lynch DK, Daly RJ (Jan 2002). "PKB-mediated negative feedback tightly regulates mitogenic signalling via Gab2". The EMBO Journal. 21 (1-2): 72–82. PMC 125816Freely accessible. PMID 11782427. doi:10.1093/emboj/21.1.72.
  79. Zhao C, Yu DH, Shen R, Feng GS (Jul 1999). "Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1". The Journal of Biological Chemistry. 274 (28): 19649–54. PMID 10391903. doi:10.1074/jbc.274.28.19649.
  80. 1 2 Lee IS, Liu Y, Narazaki M, Hibi M, Kishimoto T, Taga T (Jan 1997). "Vav is associated with signal transducing molecules gp130, Grb2 and Erk2, and is tyrosine phosphorylated in response to interleukin-6". FEBS Letters. 401 (2-3): 133–7. PMID 9013873. doi:10.1016/s0014-5793(96)01456-1.
  81. 1 2 Ward AC, Monkhouse JL, Hamilton JA, Csar XF (Nov 1998). "Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor". Biochimica et Biophysica Acta. 1448 (1): 70–6. PMID 9824671. doi:10.1016/s0167-4889(98)00120-7.
  82. 1 2 Bourguignon LY, Zhu H, Zhou B, Diedrich F, Singleton PA, Hung MC (Dec 2001). "Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185(HER2) and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth". The Journal of Biological Chemistry. 276 (52): 48679–92. PMID 11606575. doi:10.1074/jbc.M106759200.
  83. Olayioye MA, Graus-Porta D, Beerli RR, Rohrer J, Gay B, Hynes NE (Sep 1998). "ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner". Molecular and Cellular Biology. 18 (9): 5042–51. PMC 109089Freely accessible. PMID 9710588. doi:10.1128/mcb.18.9.5042.
  84. Romero F, Ramos-Morales F, Domínguez A, Rios RM, Schweighoffer F, Tocqué B, Pintor-Toro JA, Fischer S, Tortolero M (Mar 1998). "Grb2 and its apoptotic isoform Grb3-3 associate with heterogeneous nuclear ribonucleoprotein C, and these interactions are modulated by poly(U) RNA". The Journal of Biological Chemistry. 273 (13): 7776–81. PMID 9516488. doi:10.1074/jbc.273.13.7776.
  85. Liu YF, Deth RC, Devys D (Mar 1997). "SH3 domain-dependent association of huntingtin with epidermal growth factor receptor signaling complexes". The Journal of Biological Chemistry. 272 (13): 8121–4. PMID 9079622. doi:10.1074/jbc.272.13.8121.
  86. Kavanaugh WM, Pot DA, Chin SM, Deuter-Reinhard M, Jefferson AB, Norris FA, Masiarz FR, Cousens LS, Majerus PW, Williams LT (Apr 1996). "Multiple forms of an inositol polyphosphate 5-phosphatase form signaling complexes with Shc and Grb2". Current Biology. 6 (4): 438–45. PMID 8723348. doi:10.1016/s0960-9822(02)00511-0.
  87. 1 2 3 Giorgetti-Peraldi S, Peyrade F, Baron V, Van Obberghen E (Dec 1995). "Involvement of Janus kinases in the insulin signaling pathway". European Journal of Biochemistry / FEBS. 234 (2): 656–60. PMID 8536716. doi:10.1111/j.1432-1033.1995.656_b.x.
  88. 1 2 Skolnik EY, Lee CH, Batzer A, Vicentini LM, Zhou M, Daly R, Myers MJ, Backer JM, Ullrich A, White MF (May 1993). "The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling". The EMBO Journal. 12 (5): 1929–36. PMC 413414Freely accessible. PMID 8491186.
  89. Morrison KB, Tognon CE, Garnett MJ, Deal C, Sorensen PH (Aug 2002). "ETV6-NTRK3 transformation requires insulin-like growth factor 1 receptor signaling and is associated with constitutive IRS-1 tyrosine phosphorylation". Oncogene. 21 (37): 5684–95. PMID 12173038. doi:10.1038/sj.onc.1205669.
  90. Bunnell SC, Diehn M, Yaffe MB, Findell PR, Cantley LC, Berg LJ (Jan 2000). "Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade". The Journal of Biological Chemistry. 275 (3): 2219–30. PMID 10636929. doi:10.1074/jbc.275.3.2219.
  91. Andreotti AH, Bunnell SC, Feng S, Berg LJ, Schreiber SL (Jan 1997). "Regulatory intramolecular association in a tyrosine kinase of the Tec family". Nature. 385 (6611): 93–7. PMID 8985255. doi:10.1038/385093a0.
  92. Kim H, Lee YH, Won J, Yun Y (Sep 2001). "Through induction of juxtaposition and tyrosine kinase activity of Jak1, X-gene product of hepatitis B virus stimulates Ras and the transcriptional activation through AP-1, NF-kappaB, and SRE enhancers". Biochemical and Biophysical Research Communications. 286 (5): 886–94. PMID 11527382. doi:10.1006/bbrc.2001.5496.
  93. Chauhan D, Kharbanda SM, Ogata A, Urashima M, Frank D, Malik N, Kufe DW, Anderson KC (Dec 1995). "Oncostatin M induces association of Grb2 with Janus kinase JAK2 in multiple myeloma cells". The Journal of Experimental Medicine. 182 (6): 1801–6. PMC 2192257Freely accessible. PMID 7500025. doi:10.1084/jem.182.6.1801.
  94. Shen Z, Batzer A, Koehler JA, Polakis P, Schlessinger J, Lydon NB, Moran MF (Aug 1999). "Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src". Oncogene. 18 (33): 4647–53. PMID 10467411. doi:10.1038/sj.onc.1203079.
  95. Paz PE, Wang S, Clarke H, Lu X, Stokoe D, Abo A (Jun 2001). "Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells". The Biochemical Journal. 356 (Pt 2): 461–71. PMC 1221857Freely accessible. PMID 11368773. doi:10.1042/0264-6021:3560461.
  96. Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE (Jan 1998). "LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation". Cell. 92 (1): 83–92. PMID 9489702. doi:10.1016/S0092-8674(00)80901-0.
  97. Perez-Villar JJ, Whitney GS, Sitnick MT, Dunn RJ, Venkatesan S, O'Day K, Schieven GL, Lin TA, Kanner SB (Aug 2002). "Phosphorylation of the linker for activation of T-cells by Itk promotes recruitment of Vav". Biochemistry. 41 (34): 10732–40. PMID 12186560. doi:10.1021/bi025554o.
  98. 1 2 Robinson A, Gibbins J, Rodríguez-Liñares B, Finan PM, Wilson L, Kellie S, Findell P, Watson SP (Jul 1996). "Characterization of Grb2-binding proteins in human platelets activated by Fc gamma RIIA cross-linking". Blood. 88 (2): 522–30. PMID 8695800.
  99. Hendricks-Taylor LR, Motto DG, Zhang J, Siraganian RP, Koretzky GA (Jan 1997). "SLP-76 is a substrate of the high affinity IgE receptor-stimulated protein tyrosine kinases in rat basophilic leukemia cells". The Journal of Biological Chemistry. 272 (2): 1363–7. PMID 8995445. doi:10.1074/jbc.272.2.1363.
  100. Asada H, Ishii N, Sasaki Y, Endo K, Kasai H, Tanaka N, Takeshita T, Tsuchiya S, Konno T, Sugamura K (May 1999). "Grf40, A novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT". The Journal of Experimental Medicine. 189 (9): 1383–90. PMC 2193052Freely accessible. PMID 10224278. doi:10.1084/jem.189.9.1383.
  101. Lim RW, Halpain S (Jul 2000). "Regulated association of microtubule-associated protein 2 (MAP2) with Src and Grb2: evidence for MAP2 as a scaffolding protein". The Journal of Biological Chemistry. 275 (27): 20578–87. PMID 10781592. doi:10.1074/jbc.M001887200.
  102. Zamora-Leon SP, Lee G, Davies P, Shafit-Zagardo B (Oct 2001). "Binding of Fyn to MAP-2c through an SH3 binding domain. Regulation of the interaction by ERK2". The Journal of Biological Chemistry. 276 (43): 39950–8. PMID 11546790. doi:10.1074/jbc.M107807200.
  103. Pomérance M, Multon MC, Parker F, Venot C, Blondeau JP, Tocqué B, Schweighoffer F (Sep 1998). "Grb2 interaction with MEK-kinase 1 is involved in regulation of Jun-kinase activities in response to epidermal growth factor". The Journal of Biological Chemistry. 273 (38): 24301–4. PMID 9733714. doi:10.1074/jbc.273.38.24301.
  104. Oehrl W, Kardinal C, Ruf S, Adermann K, Groffen J, Feng GS, Blenis J, Tan TH, Feller SM (Oct 1998). "The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins". Oncogene. 17 (15): 1893–901. PMID 9788432. doi:10.1038/sj.onc.1202108.
  105. Anafi M, Kiefer F, Gish GD, Mbamalu G, Iscove NN, Pawson T (Oct 1997). "SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1". The Journal of Biological Chemistry. 272 (44): 27804–11. PMID 9346925. doi:10.1074/jbc.272.44.27804.
  106. Ling P, Yao Z, Meyer CF, Wang XS, Oehrl W, Feller SM, Tan TH (Feb 1999). "Interaction of hematopoietic progenitor kinase 1 with adapter proteins Crk and CrkL leads to synergistic activation of c-Jun N-terminal kinase". Molecular and Cellular Biology. 19 (2): 1359–68. PMC 116064Freely accessible. PMID 9891069.
  107. Ling P, Meyer CF, Redmond LP, Shui JW, Davis B, Rich RR, Hu MC, Wange RL, Tan TH (Jun 2001). "Involvement of hematopoietic progenitor kinase 1 in T cell receptor signaling". The Journal of Biological Chemistry. 276 (22): 18908–14. PMID 11279207. doi:10.1074/jbc.M101485200.
  108. Wiederhold T, Lee MF, James M, Neujahr R, Smith N, Murthy A, Hartwig J, Gusella JF, Ramesh V (Nov 2004). "Magicin, a novel cytoskeletal protein associates with the NF2 tumor suppressor merlin and Grb2". Oncogene. 23 (54): 8815–25. PMID 15467741. doi:10.1038/sj.onc.1208110.
  109. Li BQ, Wang MH, Kung HF, Ronsin C, Breathnach R, Leonard EJ, Kamata T (Nov 1995). "Macrophage-stimulating protein activates Ras by both activation and translocation of SOS nucleotide exchange factor". Biochemical and Biophysical Research Communications. 216 (1): 110–8. PMID 7488076. doi:10.1006/bbrc.1995.2598.
  110. Iwama A, Yamaguchi N, Suda T (Nov 1996). "STK/RON receptor tyrosine kinase mediates both apoptotic and growth signals via the multifunctional docking site conserved among the HGF receptor family". The EMBO Journal. 15 (21): 5866–75. PMC 452340Freely accessible. PMID 8918464.
  111. 1 2 Pandey P, Kharbanda S, Kufe D (Sep 1995). "Association of the DF3/MUC1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein". Cancer Research. 55 (18): 4000–3. PMID 7664271.
  112. Saleem A, Datta R, Yuan ZM, Kharbanda S, Kufe D (Dec 1995). "Involvement of stress-activated protein kinase in the cellular response to 1-beta-D-arabinofuranosylcytosine and other DNA-damaging agents". Cell Growth & Differentiation. 6 (12): 1651–8. PMID 9019171.
  113. Kharbanda S, Saleem A, Shafman T, Emoto Y, Taneja N, Rubin E, Weichselbaum R, Woodgett J, Avruch J, Kyriakis J (Aug 1995). "Ionizing radiation stimulates a Grb2-mediated association of the stress-activated protein kinase with phosphatidylinositol 3-kinase". The Journal of Biological Chemistry. 270 (32): 18871–4. PMID 7642542. doi:10.1074/jbc.270.32.18871.
  114. Satoh S, Tominaga T (Oct 2001). "mDia-interacting protein acts downstream of Rho-mDia and modifies Src activation and stress fiber formation". The Journal of Biological Chemistry. 276 (42): 39290–4. PMID 11509578. doi:10.1074/jbc.M107026200.
  115. Fukuoka M, Suetsugu S, Miki H, Fukami K, Endo T, Takenawa T (Feb 2001). "A novel neural Wiskott-Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42". The Journal of Cell Biology. 152 (3): 471–82. PMC 2196001Freely accessible. PMID 11157975. doi:10.1083/jcb.152.3.471.
  116. Sasaki A, Hata K, Suzuki S, Sawada M, Wada T, Yamaguchi K, Obinata M, Tateno H, Suzuki H, Miyagi T (Jul 2003). "Overexpression of plasma membrane-associated sialidase attenuates insulin signaling in transgenic mice". The Journal of Biological Chemistry. 278 (30): 27896–902. PMID 12730204. doi:10.1074/jbc.M212200200.
  117. Arvidsson AK, Rupp E, Nånberg E, Downward J, Rönnstrand L, Wennström S, Schlessinger J, Heldin CH, Claesson-Welsh L (Oct 1994). "Tyr-716 in the platelet-derived growth factor beta-receptor kinase insert is involved in GRB2 binding and Ras activation". Molecular and Cellular Biology. 14 (10): 6715–26. PMC 359202Freely accessible. PMID 7935391. doi:10.1128/mcb.14.10.6715.
  118. 1 2 Tang J, Feng GS, Li W (Oct 1997). "Induced direct binding of the adapter protein Nck to the GTPase-activating protein-associated protein p62 by epidermal growth factor". Oncogene. 15 (15): 1823–32. PMID 9362449. doi:10.1038/sj.onc.1201351.
  119. Saleem A, Kharbanda S, Yuan ZM, Kufe D (May 1995). "Monocyte colony-stimulating factor stimulates binding of phosphatidylinositol 3-kinase to Grb2.Sos complexes in human monocytes". The Journal of Biological Chemistry. 270 (18): 10380–3. PMID 7737969. doi:10.1074/jbc.270.18.10380.
  120. Wang J, Auger KR, Jarvis L, Shi Y, Roberts TM (May 1995). "Direct association of Grb2 with the p85 subunit of phosphatidylinositol 3-kinase". The Journal of Biological Chemistry. 270 (21): 12774–80. PMID 7759531. doi:10.1074/jbc.270.21.12774.
  121. Pei Z, Maloney JA, Yang L, Williamson JR (Sep 1997). "A new function for phospholipase C-gamma1: coupling to the adaptor protein GRB2". Archives of Biochemistry and Biophysics. 345 (1): 103–10. PMID 9281317. doi:10.1006/abbi.1997.0245.
  122. 1 2 Nel AE, Gupta S, Lee L, Ledbetter JA, Kanner SB (Aug 1995). "Ligation of the T-cell antigen receptor (TCR) induces association of hSos1, ZAP-70, phospholipase C-gamma 1, and other phosphoproteins with Grb2 and the zeta-chain of the TCR". The Journal of Biological Chemistry. 270 (31): 18428–36. PMID 7629168. doi:10.1074/jbc.270.31.18428.
  123. Scholler JK, Perez-Villar JJ, O'Day K, Kanner SB (Aug 2000). "Engagement of the T lymphocyte antigen receptor regulates association of son-of-sevenless homologues with the SH3 domain of phospholipase Cgamma1". European Journal of Immunology. 30 (8): 2378–87. PMID 10940929. doi:10.1002/1521-4141(2000)30:8<2378::AID-IMMU2378>3.0.CO;2-E.
  124. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (May 2000). "FAK integrates growth-factor and integrin signals to promote cell migration". Nature Cell Biology. 2 (5): 249–56. PMID 10806474. doi:10.1038/35010517.
  125. Hildebrand JD, Taylor JM, Parsons JT (Jun 1996). "An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase". Molecular and Cellular Biology. 16 (6): 3169–78. PMC 231310Freely accessible. PMID 8649427.
  126. Messina S, Onofri F, Bongiorno-Borbone L, Giovedì S, Valtorta F, Girault JA, Benfenati F (Jan 2003). "Specific interactions of neuronal focal adhesion kinase isoforms with Src kinases and amphiphysin". Journal of Neurochemistry. 84 (2): 253–65. PMID 12558988. doi:10.1046/j.1471-4159.2003.01519.x.
  127. Arold ST, Hoellerer MK, Noble ME (Mar 2002). "The structural basis of localization and signaling by the focal adhesion targeting domain". Structure. 10 (3): 319–27. PMID 12005431. doi:10.1016/s0969-2126(02)00717-7.
  128. 1 2 Zhang S, Mantel C, Broxmeyer HE (Mar 1999). "Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells". Journal of Leukocyte Biology. 65 (3): 372–80. PMID 10080542.
  129. 1 2 3 Ganju RK, Brubaker SA, Chernock RD, Avraham S, Groopman JE (Jun 2000). "Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk". The Journal of Biological Chemistry. 275 (23): 17263–8. PMID 10747947. doi:10.1074/jbc.M000689200.
  130. Bennett AM, Tang TL, Sugimoto S, Walsh CT, Neel BG (Jul 1994). "Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras". Proceedings of the National Academy of Sciences of the United States of America. 91 (15): 7335–9. PMC 44394Freely accessible. PMID 8041791. doi:10.1073/pnas.91.15.7335.
  131. Yin T, Shen R, Feng GS, Yang YC (Jan 1997). "Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases". The Journal of Biological Chemistry. 272 (2): 1032–7. PMID 8995399. doi:10.1074/jbc.272.2.1032.
  132. Tang H, Zhao ZJ, Huang XY, Landon EJ, Inagami T (Apr 1999). "Fyn kinase-directed activation of SH2 domain-containing protein-tyrosine phosphatase SHP-2 by Gi protein-coupled receptors in Madin-Darby canine kidney cells". The Journal of Biological Chemistry. 274 (18): 12401–7. PMID 10212213. doi:10.1074/jbc.274.18.12401.
  133. Hadari YR, Kouhara H, Lax I, Schlessinger J (Jul 1998). "Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation". Molecular and Cellular Biology. 18 (7): 3966–73. PMC 108981Freely accessible. PMID 9632781.
  134. Wong L, Johnson GR (Aug 1996). "Epidermal growth factor induces coupling of protein-tyrosine phosphatase 1D to GRB2 via the COOH-terminal SH3 domain of GRB2". The Journal of Biological Chemistry. 271 (35): 20981–4. PMID 8702859. doi:10.1074/jbc.271.35.20981.
  135. Charest A, Wagner J, Kwan M, Tremblay ML (Apr 1997). "Coupling of the murine protein tyrosine phosphatase PEST to the epidermal growth factor (EGF) receptor through a Src homology 3 (SH3) domain-mediated association with Grb2". Oncogene. 14 (14): 1643–51. PMID 9135065. doi:10.1038/sj.onc.1201008.
  136. Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M (Feb 2000). "Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein". The Journal of Biological Chemistry. 275 (6): 4283–9. PMID 10660596. doi:10.1074/jbc.275.6.4283.
  137. Liu F, Hill DE, Chernoff J (Dec 1996). "Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the Src homology 3 domain of p130(Cas)". The Journal of Biological Chemistry. 271 (49): 31290–5. PMID 8940134. doi:10.1074/jbc.271.49.31290.
  138. Kon-Kozlowski M, Pani G, Pawson T, Siminovitch KA (Feb 1996). "The tyrosine phosphatase PTP1C associates with Vav, Grb2, and mSos1 in hematopoietic cells". The Journal of Biological Chemistry. 271 (7): 3856–62. PMID 8632004. doi:10.1074/jbc.271.7.3856.
  139. den Hertog J, Hunter T (Jun 1996). "Tight association of GRB2 with receptor protein-tyrosine phosphatase alpha is mediated by the SH2 and C-terminal SH3 domains". The EMBO Journal. 15 (12): 3016–27. PMC 450243Freely accessible. PMID 8670803.
  140. den Hertog J, Tracy S, Hunter T (Jul 1994). "Phosphorylation of receptor protein-tyrosine phosphatase alpha on Tyr789, a binding site for the SH3-SH2-SH3 adaptor protein GRB-2 in vivo". The EMBO Journal. 13 (13): 3020–32. PMC 395191Freely accessible. PMID 7518772.
  141. Zheng XM, Resnick RJ, Shalloway D (Jun 2002). "Mitotic activation of protein-tyrosine phosphatase alpha and regulation of its Src-mediated transforming activity by its sites of protein kinase C phosphorylation". The Journal of Biological Chemistry. 277 (24): 21922–9. PMID 11923305. doi:10.1074/jbc.M201394200.
  142. Smit L, van der Horst G, Borst J (Apr 1996). "Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors". The Journal of Biological Chemistry. 271 (15): 8564–9. PMID 8621483. doi:10.1074/jbc.271.15.8564.
  143. Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Shibuya M, Matuoka K, Takenawa T, Kurata T, Nagashima K (Apr 1994). "C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins". Proceedings of the National Academy of Sciences of the United States of America. 91 (8): 3443–7. PMC 43593Freely accessible. PMID 7512734. doi:10.1073/pnas.91.8.3443.
  144. Borrello MG, Pelicci G, Arighi E, De Filippis L, Greco A, Bongarzone I, Rizzetti M, Pelicci PG, Pierotti MA (Jun 1994). "The oncogenic versions of the Ret and Trk tyrosine kinases bind Shc and Grb2 adaptor proteins". Oncogene. 9 (6): 1661–8. PMID 8183561.
  145. Pandey A, Duan H, Di Fiore PP, Dixit VM (Sep 1995). "The Ret receptor protein tyrosine kinase associates with the SH2-containing adapter protein Grb10". The Journal of Biological Chemistry. 270 (37): 21461–3. PMID 7665556. doi:10.1074/jbc.270.37.21461.
  146. Qian X, Riccio A, Zhang Y, Ginty DD (Nov 1998). "Identification and characterization of novel substrates of Trk receptors in developing neurons". Neuron. 21 (5): 1017–29. PMID 9856458. doi:10.1016/s0896-6273(00)80620-0.
  147. Kotani K, Wilden P, Pillay TS (Oct 1998). "SH2-Balpha is an insulin-receptor adapter protein and substrate that interacts with the activation loop of the insulin-receptor kinase". The Biochemical Journal. 335 (1): 103–9. PMC 1219757Freely accessible. PMID 9742218. doi:10.1042/bj3350103.
  148. Gout I, Middleton G, Adu J, Ninkina NN, Drobot LB, Filonenko V, Matsuka G, Davies AM, Waterfield M, Buchman VL (Aug 2000). "Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein". The EMBO Journal. 19 (15): 4015–25. PMC 306608Freely accessible. PMID 10921882. doi:10.1093/emboj/19.15.4015.
  149. Borinstein SC, Hyatt MA, Sykes VW, Straub RE, Lipkowitz S, Boulter J, Bogler O (Dec 2000). "SETA is a multifunctional adapter protein with three SH3 domains that binds Grb2, Cbl, and the novel SB1 proteins". Cellular Signalling. 12 (11-12): 769–79. PMID 11152963. doi:10.1016/s0898-6568(00)00129-7.
  150. 1 2 Satoh T, Kato J, Nishida K, Kaziro Y (May 1996). "Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation". FEBS Letters. 386 (2-3): 230–4. PMID 8647288. doi:10.1016/0014-5793(96)00449-8.
  151. Fixman ED, Fournier TM, Kamikura DM, Naujokas MA, Park M (May 1996). "Pathways downstream of Shc and Grb2 are required for cell transformation by the tpr-Met oncoprotein". The Journal of Biological Chemistry. 271 (22): 13116–22. PMID 8662733. doi:10.1074/jbc.271.22.13116.
  152. Ishihara H, Sasaoka T, Ishiki M, Takata Y, Imamura T, Usui I, Langlois WJ, Sawa T, Kobayashi M (Apr 1997). "Functional importance of Shc tyrosine 317 on insulin signaling in Rat1 fibroblasts expressing insulin receptors". The Journal of Biological Chemistry. 272 (14): 9581–6. PMID 9083103. doi:10.1074/jbc.272.14.9581.
  153. Fournier E, Blaikie P, Rosnet O, Margolis B, Birnbaum D, Borg JP (Jan 1999). "Role of tyrosine residues and protein interaction domains of SHC adaptor in VEGF receptor 3 signaling". Oncogene. 18 (2): 507–14. PMID 9927207. doi:10.1038/sj.onc.1202315.
  154. Ravichandran KS, Burakoff SJ (Jan 1994). "The adapter protein Shc interacts with the interleukin-2 (IL-2) receptor upon IL-2 stimulation". The Journal of Biological Chemistry. 269 (3): 1599–602. PMID 8294403.
  155. Lamprecht R, Farb CR, LeDoux JE (Nov 2002). "Fear memory formation involves p190 RhoGAP and ROCK proteins through a GRB2-mediated complex". Neuron. 36 (4): 727–38. PMID 12441060. doi:10.1016/s0896-6273(02)01047-4.
  156. 1 2 Park RK, Izadi KD, Deo YM, Durden DL (Sep 1999). "Role of Src in the modulation of multiple adaptor proteins in FcalphaRI oxidant signaling". Blood. 94 (6): 2112–20. PMID 10477741.
  157. Sakaguchi K, Okabayashi Y, Kasuga M (Apr 2001). "Shc mediates ligand-induced internalization of epidermal growth factor receptors". Biochemical and Biophysical Research Communications. 282 (5): 1154–60. PMID 11302736. doi:10.1006/bbrc.2001.4680.
  158. Hallak H, Seiler AE, Green JS, Henderson A, Ross BN, Rubin R (Jul 2001). "Inhibition of insulin-like growth factor-I signaling by ethanol in neuronal cells". Alcoholism: Clinical and Experimental Research. 25 (7): 1058–64. PMID 11505033. doi:10.1111/j.1530-0277.2001.tb02317.x.
  159. Yokote K, Mori S, Hansen K, McGlade J, Pawson T, Heldin CH, Claesson-Welsh L (May 1994). "Direct interaction between Shc and the platelet-derived growth factor beta-receptor". The Journal of Biological Chemistry. 269 (21): 15337–43. PMID 8195171.
  160. Lazar DF, Knez JJ, Medof ME, Cuatrecasas P, Saltiel AR (Oct 1994). "Stimulation of glycogen synthesis by insulin in human erythroleukemia cells requires the synthesis of glycosyl-phosphatidylinositol". Proceedings of the National Academy of Sciences of the United States of America. 91 (21): 9665–9. PMC 44877Freely accessible. PMID 7524086. doi:10.1073/pnas.91.21.9665.
  161. VanderKuur J, Allevato G, Billestrup N, Norstedt G, Carter-Su C (Mar 1995). "Growth hormone-promoted tyrosyl phosphorylation of SHC proteins and SHC association with Grb2". The Journal of Biological Chemistry. 270 (13): 7587–93. PMID 7535773. doi:10.1074/jbc.270.13.7587.
  162. Kanai M, Göke M, Tsunekawa S, Podolsky DK (Mar 1997). "Signal transduction pathway of human fibroblast growth factor receptor 3. Identification of a novel 66-kDa phosphoprotein". The Journal of Biological Chemistry. 272 (10): 6621–8. PMID 9045692. doi:10.1074/jbc.272.10.6621.
  163. 1 2 Spivak-Kroizman T, Mohammadi M, Hu P, Jaye M, Schlessinger J, Lax I (May 1994). "Point mutation in the fibroblast growth factor receptor eliminates phosphatidylinositol hydrolysis without affecting neuronal differentiation of PC12 cells". The Journal of Biological Chemistry. 269 (20): 14419–23. PMID 7514169.
  164. Giordano V, De Falco G, Chiari R, Quinto I, Pelicci PG, Bartholomew L, Delmastro P, Gadina M, Scala G (May 1997). "Shc mediates IL-6 signaling by interacting with gp130 and Jak2 kinase". Journal of Immunology. 158 (9): 4097–103. PMID 9126968.
  165. 1 2 Germani A, Romero F, Houlard M, Camonis J, Gisselbrecht S, Fischer S, Varin-Blank N (May 1999). "hSiah2 is a new Vav binding protein which inhibits Vav-mediated signaling pathways". Molecular and Cellular Biology. 19 (5): 3798–807. PMC 84217Freely accessible. PMID 10207103.
  166. Li N, Batzer A, Daly R, Yajnik V, Skolnik E, Chardin P, Bar-Sagi D, Margolis B, Schlessinger J (May 1993). "Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling". Nature. 363 (6424): 85–8. PMID 8479541. doi:10.1038/363085a0.
  167. Reif K, Buday L, Downward J, Cantrell DA (May 1994). "SH3 domains of the adapter molecule Grb2 complex with two proteins in T cells: the guanine nucleotide exchange protein Sos and a 75-kDa protein that is a substrate for T cell antigen receptor-activated tyrosine kinases". The Journal of Biological Chemistry. 269 (19): 14081–7. PMID 8188688.
  168. D'Angelo G, Martini JF, Iiri T, Fantl WJ, Martial J, Weiner RI (May 1999). "16K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells". Molecular Endocrinology. 13 (5): 692–704. PMID 10319320. doi:10.1210/mend.13.5.0280.
  169. Tong XK, Hussain NK, de Heuvel E, Kurakin A, Abi-Jaoude E, Quinn CC, Olson MF, Marais R, Baranes D, Kay BK, McPherson PS (Mar 2000). "The endocytic protein intersectin is a major binding partner for the Ras exchange factor mSos1 in rat brain". The EMBO Journal. 19 (6): 1263–71. PMC 305667Freely accessible. PMID 10716926. doi:10.1093/emboj/19.6.1263.
  170. Chin H, Saito T, Arai A, Yamamoto K, Kamiyama R, Miyasaka N, Miura O (Oct 1997). "Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells". Biochemical and Biophysical Research Communications. 239 (2): 412–7. PMID 9344843. doi:10.1006/bbrc.1997.7480.
  171. Wan KF, Sambi BS, Tate R, Waters C, Pyne NJ (May 2003). "The inhibitory gamma subunit of the type 6 retinal cGMP phosphodiesterase functions to link c-Src and G-protein-coupled receptor kinase 2 in a signaling unit that regulates p42/p44 mitogen-activated protein kinase by epidermal growth factor". The Journal of Biological Chemistry. 278 (20): 18658–63. PMID 12624098. doi:10.1074/jbc.M212103200.
  172. Kato-Stankiewicz J, Ueda S, Kataoka T, Kaziro Y, Satoh T (Jun 2001). "Epidermal growth factor stimulation of the ACK1/Dbl pathway in a Cdc42 and Grb2-dependent manner". Biochemical and Biophysical Research Communications. 284 (2): 470–7. PMID 11394904. doi:10.1006/bbrc.2001.5004.
  173. Song C, Perides G, Liu YF (Feb 2002). "Expression of full-length polyglutamine-expanded Huntingtin disrupts growth factor receptor signaling in rat pheochromocytoma (PC12) cells". The Journal of Biological Chemistry. 277 (8): 6703–7. PMID 11733534. doi:10.1074/jbc.M110338200.
  174. MacDonald JI, Gryz EA, Kubu CJ, Verdi JM, Meakin SO (Jun 2000). "Direct binding of the signaling adapter protein Grb2 to the activation loop tyrosines on the nerve growth factor receptor tyrosine kinase, TrkA". The Journal of Biological Chemistry. 275 (24): 18225–33. PMID 10748052. doi:10.1074/jbc.M001862200.
  175. Song JS, Gomez J, Stancato LF, Rivera J (Oct 1996). "Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex". The Journal of Biological Chemistry. 271 (43): 26962–70. PMID 8900182. doi:10.1074/jbc.271.43.26962.
  176. Ye ZS, Baltimore D (Dec 1994). "Binding of Vav to Grb2 through dimerization of Src homology 3 domains". Proceedings of the National Academy of Sciences of the United States of America. 91 (26): 12629–33. PMC 45492Freely accessible. PMID 7809090. doi:10.1073/pnas.91.26.12629.
  177. Zeng L, Sachdev P, Yan L, Chan JL, Trenkle T, McClelland M, Welsh J, Wang LH (Dec 2000). "Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation". Molecular and Cellular Biology. 20 (24): 9212–24. PMC 102179Freely accessible. PMID 11094073. doi:10.1128/mcb.20.24.9212-9224.2000.
  178. Banin S, Truong O, Katz DR, Waterfield MD, Brickell PM, Gout I (Aug 1996). "Wiskott-Aldrich syndrome protein (WASp) is a binding partner for c-Src family protein-tyrosine kinases". Current Biology. 6 (8): 981–8. PMID 8805332. doi:10.1016/s0960-9822(02)00642-5.
  179. She HY, Rockow S, Tang J, Nishimura R, Skolnik EY, Chen M, Margolis B, Li W (Sep 1997). "Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells". Molecular Biology of the Cell. 8 (9): 1709–21. PMC 305731Freely accessible. PMID 9307968. doi:10.1091/mbc.8.9.1709.

Further reading

  • Colledge M, Froehner SC (May 1998). "Interaction between the nicotinic acetylcholine receptor and Grb2. Implications for signaling at the neuromuscular junction". Annals of the New York Academy of Sciences. 841: 17–27. PMID 9668219. doi:10.1111/j.1749-6632.1998.tb10907.x. 
  • Ramesh N, Antón IM, Martínez-Quiles N, Geha RS (Jan 1999). "Waltzing with WASP". Trends in Cell Biology. 9 (1): 15–9. PMID 10087612. doi:10.1016/S0962-8924(98)01411-1. 
  • O'Sullivan E, Kinnon C, Brickell P (1999). "Wiskott-Aldrich syndrome protein, WASP". The International Journal of Biochemistry & Cell Biology. 31 (3-4): 383–7. PMID 10224664. doi:10.1016/S1357-2725(98)00118-6. 
  • Schlaepfer DD, Hauck CR, Sieg DJ (1999). "Signaling through focal adhesion kinase". Progress in Biophysics and Molecular Biology. 71 (3-4): 435–78. PMID 10354709. doi:10.1016/S0079-6107(98)00052-2. 
  • Vidal M, Liu WQ, Gril B, Assayag F, Poupon MF, Garbay C (2004). "[Design of new anti-tumor agents interrupting deregulated signaling pathways induced by tyrosine kinase proteins. Inhibition of protein-protein interaction involving Grb2]". Journal De La Société De Biologie. 198 (2): 133–7. PMID 15368963. 
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.