Gires–Tournois etalon

In optics, a Gires–Tournois etalon is a transparent plate with two reflecting surfaces, one of which has very high reflectivity. Due to multiple-beam interference, light incident on a Gires–Tournois etalon is (almost) completely reflected, but has an effective phase shift that depends strongly on the wavelength of the light.

The complex amplitude reflectivity of a Gires–Tournois etalon is given by

where r1 is the complex amplitude reflectivity of the first surface,

n is the index of refraction of the plate
t is the thickness of the plate
θt is the angle of refraction the light makes within the plate, and
λ is the wavelength of the light in vacuum.

Nonlinear effective phase shift

Nonlinear phase shift Φ as a function of δ for different R values: (a) R = 0, (b) R = 0.1, (c) R = 0.5, and (d) R = 0.9.

Suppose that is real. Then , independent of . This indicates that all the incident energy is reflected and intensity is uniform. However, the multiple reflection causes a nonlinear phase shift .

To show this effect, we assume is real and , where is the intensity reflectivity of the first surface. Define the effective phase shift through

One obtains

For R = 0, no reflection from the first surface and the resultant nonlinear phase shift is equal to the round-trip phase change () – linear response. However, as can be seen, when R is increased, the nonlinear phase shift gives the nonlinear response to and shows step-like behavior. Gires–Tournois etalon has applications for laser pulse compression and nonlinear Michelson interferometer.

Gires–Tournois etalons are closely related to Fabry–Pérot etalons.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.