Normal-gamma distribution

normal-gamma
Parameters location (real)
(real)
(real)
(real)
Support
PDF
Mean [1]
Mode
Variance [1]

In probability theory and statistics, the normal-gamma distribution (or Gaussian-gamma distribution) is a bivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and precision.[2]

Definition

For a pair of random variables, (X,T), suppose that the conditional distribution of X given T is given by

meaning that the conditional distribution is a normal distribution with mean and precision — equivalently, with variance

Suppose also that the marginal distribution of T is given by

where this means that T has a gamma distribution. Here λ, α and β are parameters of the joint distribution.

Then (X,T) has a normal-gamma distribution, and this is denoted by

Properties

Probability density function

The joint probability density function of (X,T) is

Marginal distributions

By construction, the marginal distribution over is a gamma distribution, and the conditional distribution over given is a Gaussian distribution. The marginal distribution over is a three-parameter non-standardized Student's t-distribution with parameters .

Exponential family

The normal-gamma distribution is a four-parameter exponential family with natural parameters and natural statistics .

Moments of the natural statistics

The following moments can be easily computed using the moment generating function of the sufficient statistic:

, where is the digamma function,
,
,
.

Scaling

If then for any b > 0, (bX,bT) is distributed as

Posterior distribution of the parameters

Assume that x is distributed according to a normal distribution with unknown mean and precision .

and that the prior distribution on and , , has a normal-gamma distribution

for which the density π satisfies

Given a dataset , consisting of independent and identically distributed random variables (i.i.d), , the posterior distribution of and given this dataset can be analytically determined by Bayes' theorem.[3] Explicitly,

,

where is the likelihood of the data given the parameters.

Since the data are i.i.d, the likelihood of the entire dataset is equal to the product of the likelihoods of the individual data samples:

This expression can be simplified as follows:

where , the mean of the data samples, and , the sample variance.

The posterior distribution of the parameters is proportional to the prior times the likelihood.

The final exponential term is simplified by completing the square.

On inserting this back into the expression above,

This final expression is in exactly the same form as a Normal-Gamma distribution, i.e.,

Interpretation of parameters

The interpretation of parameters in terms of pseudo-observations is as follows:

As a consequence, if one has a prior mean of from samples and a prior precision of from samples, the prior distribution over and is

and after observing samples with mean and variance , the posterior probability is

Note that in some programming languages, such as Matlab, the gamma distribution is implemented with the inverse definition of , so the fourth argument of the Normal-Gamma distribution is .

Generating normal-gamma random variates

Generation of random variates is straightforward:

  1. Sample from a gamma distribution with parameters and
  2. Sample from a normal distribution with mean and variance

Notes

  1. 1 2 Bernardo & Smith (1993, p.434)
  2. Bernardo & Smith (1993, pages 136, 268, 434)
  3. http://www.trinity.edu/cbrown/bayesweb/

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.