Gated recurrent unit

Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014. Their performance on polyphonic music modeling and speech signal modeling was found to be similar to that of long short-term memory.[1] They have fewer parameters than LSTM, as they lack an output gate.[2]

Architecture

denotes the Hadamard product. .

Variables

Activation functions

See also

References

  1. Chung, Junyoung; Gulcehre, Caglar; Cho, KyungHyun; Bengio, Yoshua (2014). "Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling". arXiv:1412.3555Freely accessible [cs.NE].
  2. "Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano – WildML". Wildml.com. Retrieved May 18, 2016.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.