GIT quotient

In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme with action by a group scheme G is the affine scheme , the prime spectrum of the ring of invariants of A, and is denoted by . A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it.

Taking Proj (of a graded ring) instead of , one obtains a projective GIT quotient (which is a quotient of the set of semistable points.)

A GIT quotient is a categorical quotient of the locus of semistable points; i.e., "the" quotient of the semistable locus. Since the categorical quotient is unique, if there is a geometric quotient, then the two notions coincide: for example, one has for an algebraic group G over a field k and closed subgroup H.

If X is a complex smooth projective variety and if G is a reductive complex Lie group, then the GIT quotient of X by G is homeomorphic to the symplectic quotient of X by a maximal compact subgroup of G (Kempf–Ness theorem).

Examples

A simple example of a GIT quotient is given by the -action on sending

Notice that the monomials generate the ring . Hence we can write the ring of invariants as

Scheme theoretically, we get the morphism

See also

References

Pedagogical


Reference


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.