KCNJ5

KCNJ5
Identifiers
AliasesKCNJ5, CIR, GIRK4, KATP1, KIR3.4, LQT13, potassium voltage-gated channel subfamily J member 5
External IDsMGI: 104755 HomoloGene: 20248 GeneCards: KCNJ5
Orthologs
SpeciesHumanMouse
Entrez

3762

16521

Ensembl

ENSG00000120457

ENSMUSG00000032034

UniProt

P48544

P48545

RefSeq (mRNA)

NM_000890

NM_010605

RefSeq (protein)

NP_000881

NP_034735

Location (UCSC)Chr 11: 128.89 – 128.92 MbChr 9: 32.31 – 32.34 Mb
PubMed search[1][2]
Wikidata
View/Edit HumanView/Edit Mouse

G protein-activated inward rectifier potassium channel 4 is a protein that in humans is encoded by the KCNJ5 gene and is a type of G protein-gated ion channel.[3][4]

Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins. It may associate with other G-protein-activated potassium channel subunits to form a heterotetrameric pore-forming complex.[4]

Mutations in KCNJ5/Kir3.4 cause Andersen-Tawil syndrome .[5]

Interactions

KCNJ5 has been shown to interact with KCNJ3.[6][7]

See also

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA (Dec 2005). "International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels". Pharmacol Rev. 57 (4): 509–26. PMID 16382105. doi:10.1124/pr.57.4.11.
  4. 1 2 "Entrez Gene: KCNJ5 potassium inwardly-rectifying channel, subfamily J, member 5".
  5. Kokunai, Y; Nakata, T; Furuta, M; Sakata, S; Kimura, H; Aiba, T; Yoshinaga, M; Osaki, Y; Nakamori, M; Itoh, H; Sato, T; Kubota, T; Kadota, K; Shindo, K; Mochizuki, H; Shimizu, W; Horie, M; Okamura, Y; Ohno, K; Takahashi, M. P. (2014). "A Kir3.4 mutation causes Andersen-Tawil syndrome by an inhibitory effect on Kir2.1". Neurology. 82 (12): 1058–64. PMID 24574546. doi:10.1212/WNL.0000000000000239.
  6. Huang, C L; Jan Y N; Jan L Y (Apr 1997). "Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels". FEBS Lett. NETHERLANDS. 405 (3): 291–8. ISSN 0014-5793. PMID 9108307. doi:10.1016/S0014-5793(97)00197-X.
  7. He, Cheng; Yan Xixin; Zhang Hailin; Mirshahi Tooraj; Jin Taihao; Huang Aijun; Logothetis Diomedes E (Feb 2002). "Identification of critical residues controlling G protein-gated inwardly rectifying K(+) channel activity through interactions with the beta gamma subunits of G proteins". J. Biol. Chem. United States. 277 (8): 6088–96. ISSN 0021-9258. PMID 11741896. doi:10.1074/jbc.M104851200.

Further reading

  • Zhuo ML, Huang Y, Liu DP, Liang CC (2005). "KATP channel: relation with cell metabolism and role in the cardiovascular system". Int. J. Biochem. Cell Biol. 37 (4): 751–64. PMID 15694835. doi:10.1016/j.biocel.2004.10.008. 
  • Tucker SJ, James MR, Adelman JP (1995). "Assignment of KATP-1, the cardiac ATP-sensitive potassium channel gene (KCNJ5), to human chromosome 11q24". Genomics. 28 (1): 127–8. PMID 7590741. doi:10.1006/geno.1995.1121. 
  • Ashford ML, Bond CT, Blair TA, Adelman JP (1994). "Cloning and functional expression of a rat heart KATP channel". Nature. 370 (6489): 456–9. PMID 8047164. doi:10.1038/370456a0.  (Retracted. If this is intentional, please replace {{Retracted}} with {{Retracted|intentional=yes}}.)
  • Ashford ML, Bond CT, Blair TA, Adelman JP (1996). "Cloning and functional expression of a rat heart KATP channel". Nature. 378 (6559): 792. PMID 8524415. doi:10.1038/378792a0. 
  • Spauschus A, Lentes KU, Wischmeyer E, et al. (1996). "A G-protein-activated inwardly rectifying K+ channel (GIRK4) from human hippocampus associates with other GIRK channels". J. Neurosci. 16 (3): 930–8. PMID 8558261. 
  • Iizuka M, Kubo Y, Tsunenari I, et al. (1996). "Functional characterization and localization of a cardiac-type inwardly rectifying K+ channel". Recept. Channels. 3 (4): 299–315. PMID 8834003. 
  • Chan KW, Langan MN, Sui JL, et al. (1996). "A recombinant inwardly rectifying potassium channel coupled to GTP- binding proteins". J. Gen. Physiol. 107 (3): 381–97. PMC 2216996Freely accessible. PMID 8868049. doi:10.1085/jgp.107.3.381. 
  • Huang CL, Jan YN, Jan LY (1997). "Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels". FEBS Lett. 405 (3): 291–8. PMID 9108307. doi:10.1016/S0014-5793(97)00197-X. 
  • Kanzaki M, Lindorfer MA, Garrison JC, Kojima I (1997). "Activation of the calcium-permeable cation channel CD20 by alpha subunits of the Gi protein". J. Biol. Chem. 272 (23): 14733–9. PMID 9169438. doi:10.1074/jbc.272.23.14733. 
  • Wischmeyer E, Döring F, Wischmeyer E, et al. (1997). "Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels". Mol. Cell. Neurosci. 9 (3): 194–206. PMID 9245502. doi:10.1006/mcne.1997.0614. 
  • Krapivinsky G, Kennedy ME, Nemec J, et al. (1998). "Gbeta binding to GIRK4 subunit is critical for G protein-gated K+ channel activation". J. Biol. Chem. 273 (27): 16946–52. PMID 9642257. doi:10.1074/jbc.273.27.16946. 
  • Corey S, Clapham DE (1998). "Identification of native atrial G-protein-regulated inwardly rectifying K+ (GIRK4) channel homomultimers". J. Biol. Chem. 273 (42): 27499–504. PMID 9765280. doi:10.1074/jbc.273.42.27499. 
  • Kennedy ME, Nemec J, Corey S, et al. (1999). "GIRK4 confers appropriate processing and cell surface localization to G-protein-gated potassium channels". J. Biol. Chem. 274 (4): 2571–82. PMID 9891030. doi:10.1074/jbc.274.4.2571. 
  • Schoots O, Wilson JM, Ethier N, et al. (2000). "Co-expression of human Kir3 subunits can yield channels with different functional properties". Cell. Signal. 11 (12): 871–83. PMID 10659995. doi:10.1016/S0898-6568(99)00059-5. 
  • He C, Yan X, Zhang H, et al. (2002). "Identification of critical residues controlling G protein-gated inwardly rectifying K(+) channel activity through interactions with the beta gamma subunits of G proteins". J. Biol. Chem. 277 (8): 6088–96. PMID 11741896. doi:10.1074/jbc.M104851200. 
  • Ma D, Zerangue N, Raab-Graham K, et al. (2002). "Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart". Neuron. 33 (5): 715–29. PMID 11879649. doi:10.1016/S0896-6273(02)00614-1. 
  • Lavine N, Ethier N, Oak JN, et al. (2003). "G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase". J. Biol. Chem. 277 (48): 46010–9. PMID 12297500. doi:10.1074/jbc.M205035200. 
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. PMC 139241Freely accessible. PMID 12477932. doi:10.1073/pnas.242603899. 
  • Shankar H, Murugappan S, Kim S, et al. (2004). "Role of G protein-gated inwardly rectifying potassium channels in P2Y12 receptor-mediated platelet functional responses". Blood. 104 (5): 1335–43. PMID 15142872. doi:10.1182/blood-2004-01-0069. 

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.