GATA3

GATA3
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesGATA3, HDR, HDRS, GATA binding protein 3
External IDsMGI: 95663 HomoloGene: 1550 GeneCards: GATA3
RNA expression pattern




More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

2625

14462

Ensembl

ENSG00000107485

ENSMUSG00000015619

UniProt

P23771

P23772

RefSeq (mRNA)

NM_001002295
NM_002051

NM_008091

RefSeq (protein)

NP_001002295
NP_002042

NP_032117

Location (UCSC)Chr 10: 8.05 – 8.08 MbChr 2: 9.86 – 9.89 Mb
PubMed search[1][2]
Wikidata
View/Edit HumanView/Edit Mouse

Transcription factor GATA-3 is a protein that in humans is encoded by the GATA3 gene.[3][4][5]

Function

GATA-3 belongs to the GATA family of transcription factors. It regulates luminal epithelial cell differentiation in the mammary gland.[6] The protein contains two GATA-type zinc fingers and is an important regulator of T cell development and plays an important role in endothelial cell biology. GATA-3 has been shown to promote the secretion of IL-4, IL-5, and IL-13 from Th2 cells, and induces the differentiation of Th0 cells towards this Th2 cell subtype while suppressing their differentiation towards Th1 cells.[7] It is hypothesised that GATA-3 may play tissue-specific roles.[8] It has been suggested that GATA-3 is regulated in CD4+ T cells at a transcriptional level through the IL-4 receptor, as well as translationally through T cell receptor signaling.[9]

Clinical significance

Defects in this gene are the cause of hypoparathyroidism with sensorineural deafness and renal dysplasia.

Breast cancer

GATA-3 is one of the three genes mutated in >10% of breast cancers (Cancer Genome Atlas).[10]

GATA-3 was shown to be required for the luminal A type of breast cancer, intertwined in pathways with ERα[11][12] but also androgen receptor signaling in ER-/AR+ tumors.[13]

Nuclear expression of GATA-3 in breast cancer is considered a marker of luminal cancer in ER+ cancer and luminal androgen responsive cancer in ER-/AR+ tumors.[14] It is highly coexpressed with FOXA1 and serves as negative predictor of basal subtype and ERBB2 subtype.[13][15][16] GATA-3 was shown to directly regulate luminal cell differentiation in mouse models of breast cancer.[17] It is also considered a strong predictor of taxane and platin salts insensitivity.

Insulin has been shown in experimental models to downregulate expression of GATA3 by causing overexpression of T-bet, resulting in resistance to endocrine therapy.[18]

Interactions

GATA3 has been shown to interact with LMO1,[19][20] ER and FOXA1.[16]

See also

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. Joulin V, Bories D, Eléouet JF, Labastie MC, Chrétien S, Mattéi MG, Roméo PH (Jul 1991). "A T-cell specific TCR delta DNA binding protein is a member of the human GATA family". The EMBO Journal. 10 (7): 1809–16. PMC 452855Freely accessible. PMID 2050118.
  4. Yamashita M, Ukai-Tadenuma M, Miyamoto T, Sugaya K, Hosokawa H, Hasegawa A, Kimura M, Taniguchi M, DeGregori J, Nakayama T (Jun 2004). "Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci". The Journal of Biological Chemistry. 279 (26): 26983–90. PMID 15087456. doi:10.1074/jbc.M403688200.
  5. "Entrez Gene: GATA3 GATA binding protein 3".
  6. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z (Dec 2006). "GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland". Cell. 127 (5): 1041–55. PMC 2646406Freely accessible. PMID 17129787. doi:10.1016/j.cell.2006.09.048.
  7. Yagi R, Zhu J, Paul WE (Jul 2011). "An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation". International Immunology. 23 (7): 415–20. PMC 3123974Freely accessible. PMID 21632975. doi:10.1093/intimm/dxr029.
  8. Wilson BJ (2008). "Does GATA3 act in tissue-specific pathways? A meta-analysis-based approach". Journal of Carcinogenesis. 7: 6. PMC 2669725Freely accessible. PMID 19008565. doi:10.4103/1477-3163.43426.
  9. Cook KD, Miller J (September 15, 2010). "TCR-dependent translational control of GATA-3 enhances Th2 differentiation". Journal of Immunology. 185 (6): 3209–3216. PMC 3993005Freely accessible. PMID 20696860. doi:10.4049/jimmunol.0902544.
  10. Koboldt DC, Fulton RS, McLellan MD (Oct 2012). "Comprehensive molecular portraits of human breast tumours". Nature. 490 (7418): 61–70. PMC 3465532Freely accessible. PMID 23000897. doi:10.1038/nature11412.
  11. Wilson BJ, Giguère V (2008). "Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway". Molecular Cancer. 7: 49. PMC 2430971Freely accessible. PMID 18533032. doi:10.1186/1476-4598-7-49.
  12. Dydensborg AB, Rose AA, Wilson BJ, Grote D, Paquet M, Giguère V, Siegel PM, Bouchard M (Jul 2009). "GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis". Oncogene. 28 (29): 2634–42. PMID 19483726. doi:10.1038/onc.2009.126.
  13. 1 2 Sanga S, Broom BM, Cristini V, Edgerton ME (2009). "Gene expression meta-analysis supports existence of molecular apocrine breast cancer with a role for androgen receptor and implies interactions with ErbB family". BMC Medical Genomics. 2: 59. PMC 2753593Freely accessible. PMID 19747394. doi:10.1186/1755-8794-2-59.
  14. Kouros-Mehr H, Kim JW, Bechis SK, Werb Z (Apr 2008). "GATA-3 and the regulation of the mammary luminal cell fate". Current Opinion in Cell Biology. 20 (2): 164–70. PMC 2397451Freely accessible. PMID 18358709. doi:10.1016/j.ceb.2008.02.003.
  15. Jacquemier J, Charafe-Jauffret E, Monville F, Esterni B, Extra JM, Houvenaeghel G, Xerri L, Bertucci F, Birnbaum D (2009). "Association of GATA3, P53, Ki67 status and vascular peritumoral invasion are strongly prognostic in luminal breast cancer". Breast Cancer Research. 11 (2): R23. PMC 2688952Freely accessible. PMID 19405945. doi:10.1186/bcr2249.
  16. 1 2 Albergaria A, Paredes J, Sousa B, Milanezi F, Carneiro V, Bastos J, Costa S, Vieira D, Lopes N, Lam EW, Lunet N, Schmitt F (2009). "Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumours". Breast Cancer Research. 11 (3): R40. PMC 2716509Freely accessible. PMID 19549328. doi:10.1186/bcr2327.
  17. Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ, Pai SY, Ho IC, Werb Z (Feb 2008). "GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model". Cancer Cell. 13 (2): 141–52. PMC 2262951Freely accessible. PMID 18242514. doi:10.1016/j.ccr.2008.01.011.
  18. McCune K, Bhat-Nakshatri P, Thorat MA, Nephew KP, Badve S, Nakshatri H (Jan 2010). "Prognosis of hormone-dependent breast cancers: implications of the presence of dysfunctional transcriptional networks activated by insulin via the immune transcription factor T-bet". Cancer Research. 70 (2): 685–96. PMC 2807987Freely accessible. PMID 20068169. doi:10.1158/0008-5472.CAN-09-1530.
  19. Ono Y, Fukuhara N, Yoshie O (Dec 1998). "TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3". Molecular and Cellular Biology. 18 (12): 6939–50. PMC 109277Freely accessible. PMID 9819382.
  20. Ono Y, Fukuhara N, Yoshie O (Feb 1997). "Transcriptional activity of TAL1 in T cell acute lymphoblastic leukemia (T-ALL) requires RBTN1 or -2 and induces TALLA1, a highly specific tumor marker of T-ALL". The Journal of Biological Chemistry. 272 (7): 4576–81. PMID 9020185. doi:10.1074/jbc.272.7.4576.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.