Functional notation
Function | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x ↦ f (x) | |||||||||||||||||||||||||||||
By domain and codomain | |||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||
Classes/properties | |||||||||||||||||||||||||||||
Constant · Identity · Linear · Polynomial · Rational · Algebraic · Analytic · Smooth · Continuous · Measurable · Injective · Surjective · Bijective | |||||||||||||||||||||||||||||
Constructions | |||||||||||||||||||||||||||||
Restriction · Composition · λ · Inverse | |||||||||||||||||||||||||||||
Generalizations | |||||||||||||||||||||||||||||
Partial · Multivalued · Implicit | |||||||||||||||||||||||||||||
Functional notation is the notation for expressing functions as which was first used by Leonhard Euler in 1734.[1] In this notation, an inverse function is expressed as .[2]
References
- ↑ Ron Larson, Bruce H. Edwards (2010), Calculus of a Single Variable, Cengage Learning, p. 19, ISBN 9780538735520
- ↑ W.T. Brande, A Dictionary of Science, Literature and Art, p. 683
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.