Whitham equation

In mathematical physics, the Whitham equation is a non-local model for non-linear dispersive waves. [1][2][3]

The equation is notated as follows :

This integro-differential equation for the oscillatory variable η(x,t) is named after Gerald Whitham who introduced it as a model to study breaking of non-linear dispersive water waves in 1967.[4]

For a certain choice of the kernel K(x  ξ) it becomes the Fornberg–Whitham equation.

Water waves

Using the Fourier transform (and its inverse), with respect to the space coordinate x and in terms of the wavenumber k:

  while  
with g the gravitational acceleration and h the mean water depth. The associated kernel Kww(s) is, using the inverse Fourier transform:[4]
   
with δ(s) the Dirac delta function.
  and     with  
The resulting integro-differential equation can be reduced to the partial differential equation known as the Fornberg–Whitham equation:[5]
This equation is shown to allow for peakon solutions – as a model for waves of limiting height – as well as the occurrence of wave breaking (shock waves, absent in e.g. solutions of the Korteweg–de Vries equation).[5][3]

Notes and references

Notes

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.