Formate dehydrogenase
Formate dehydrogenase N, transmembrane | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Form-deh_trans | ||||||||
Pfam | PF09163 | ||||||||
InterPro | IPR015246 | ||||||||
SCOP | 1kqf | ||||||||
SUPERFAMILY | 1kqf | ||||||||
OPM superfamily | 3 | ||||||||
OPM protein | 1kqf | ||||||||
|
Formate dehydrogenases are a set of enzymes that catalyse the oxidation of formate to carbon dioxide, donating the electrons to a second substrate, such as NAD+ in formate:NAD+ oxidoreductase (EC 1.2.1.2) or to a cytochrome in formate:ferricytochrome-b1 oxidoreductase (EC 1.2.2.1).[1]
Function
NAD-dependent formate dehydrogenases are important in methylotrophic yeast and bacteria and are vital in the catabolism of C1 compounds such as methanol.[2] The cytochrome-dependent enzymes are more important in anaerobic metabolism in prokaryotes.[3] For example, in E. coli, the formate:ferricytochrome-b1 oxidoreductase is an intrinsic membrane protein with two subunits and is involved in anaerobic nitrate respiration.[4][5]
NAD-dependent reaction
Formate + NAD+ ⇌ CO2 + NADH + H+
Cytochrome-dependent reaction
Formate + 2 ferricytochrome b1 ⇌ CO2 + 2 ferrocytochrome b1 + 2 H+
Molybdopterin, molybdenum and selenium dependence
One of the enzymes in the oxidoreductase family that sometimes employ tungsten (bacterial formate dehydrogenase H) is known to use a selenium-molybdenum version of molybdopterin.[6]
Transmembrane domain
The transmembrane domain of the beta subunit of formate dehydrogenase consists of a single transmembrane helix. This domain acts as a transmembrane anchor, allowing the conduction of electrons within the protein.[7]
See also
- Formate dehydrogenase (cytochrome)
- Formate dehydrogenase (cytochrome-c-553)
- Formate dehydrogenase (NADP+)
- Microbial metabolism
References
- ↑ Ferry JG (1990). "Formate dehydrogenase". FEMS Microbiol. Rev. 7 (3–4): 377–82. PMID 2094290. doi:10.1111/j.1574-6968.1990.tb04940.x.
- ↑ Popov VO, Lamzin VS (1994). "NAD(+)-dependent formate dehydrogenase". Biochem. J. 301 (3): 625–43. PMC 1137035 . PMID 8053888.
- ↑ Jormakka M, Byrne B, Iwata S (2003). "Formate dehydrogenase--a versatile enzyme in changing environments". Curr. Opin. Struct. Biol. 13 (4): 418–23. PMID 12948771. doi:10.1016/S0959-440X(03)00098-8.
- ↑ Graham A, Boxer DH (1981). "The organization of formate dehydrogenase in the cytoplasmic membrane of Escherichia coli". Biochem. J. 195 (3): 627–37. PMC 1162934 . PMID 7032506.
- ↑ Ruiz-Herrera J, DeMoss JA (1969). "Nitrate reductase complex of Escherichia coli K-12: participation of specific formate dehydrogenase and cytochrome b1 components in nitrate reduction". J. Bacteriol. 99 (3): 720–9. PMC 250087 . PMID 4905536.
- ↑ Khangulov SV, Gladyshev VN, Dismukes GC, Stadtman TC (1998). "Selenium-Containing Formate Dehydrogenase H from Escherichia coli: A Molybdopterin Enzyme That Catalyzes Formate Oxidation without Oxygen Transfer". Biochemistry. 37 (10): 3518–3528. PMID 9521673. doi:10.1021/bi972177k.
- ↑ Jormakka M, Törnroth S, Byrne B, Iwata S (2002). "Molecular basis of proton motive force generation: structure of formate dehydrogenase-N". Science. 295 (5561): 1863–1868. PMID 11884747. doi:10.1126/science.1068186.