First case of Fermat's Last Theorem
The first case of Fermat's last theorem says that for three integers x, y and z and a prime number p, where p does not divide the product xyz, there are no solutions to the equation xp + yp + zp = 0.
Using the Theorem of unique factorization of ideals in Q(ξ) it was shown that if the first case has solutions x, y, z, then x+y+z is divisible by p and (x, y), (y, z) and (z, x) are elements of Hp, where Hp denotes a set of pairs of integers with special properties.[1]
Notes
- ↑ Granville, A.; Monagan, M. B. (1988), "The First Case of Fermat's Last Theorem is true for all prime exponents up to 714,591,416,091,389", Transactions of the American Mathematical Society, 306 (1): 329–359, doi:10.1090/S0002-9947-1988-0927694-5.
References
- Coppersmith, D. (1990), "Fermat's Last Theorem (Case I) and the Wieferich Criterion" (PDF), Math. Comp., AMS, 54 (190): 895–902, JSTOR 2008518, doi:10.1090/s0025-5718-1990-1010598-2.
- Cikánek, P. (1994), "A Special Extension of Wieferich's Criterion" (PDF), Math. Comp., AMS, 62 (206): 923–930, JSTOR 3562296, doi:10.2307/2153550.
- Dilcher, K.; Skula, L. (1995), "A new criterion for the first case of Fermat's last theorem", Math. Comp., AMS, 64 (209): 363–392, JSTOR 2153341, doi:10.1090/s0025-5718-1995-1248969-6
- Lehmer, D. H.; Lehmer, E. (1941), "On the first case of Fermat's last theorem", Bull. Amer. Math. Soc., 47 (2): 139–142, doi:10.1090/s0002-9904-1941-07393-3
- Rosser, B. (1939), "On the first case of Fermat's last theorem", Bull. Amer. Math. Soc., 45 (8): 636–640, doi:10.1090/s0002-9904-1939-07058-4
- Jha, V. (1994), "On Krasnér's theorem for the first case of Fermat's last theorem" (PDF), Colloqium Mathematicum, 67: 25–31
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.