Exomoon
An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body.[1]
It is inferred from the empirical study of natural satellites in the Solar System that they are likely to be common elements of planetary systems. The majority of detected exoplanets are giant planets. In the Solar System, the giant planets have large collections of natural satellites (see Moons of Jupiter, Moons of Saturn, Moons of Uranus and Moons of Neptune). Therefore, it is reasonable to assume that exomoons are equally common.
Though exomoons are difficult to detect and confirm using current techniques,[2] observations from missions such as Kepler have observed a number of candidates, including some that may be habitats for extraterrestrial life and one that may be a free-floating planet.[1]
Definition of satellites around brown dwarfs
Although traditional usage implies moons orbit a planet, the discovery of planet-sized satellites around brown dwarfs blurs the distinction between planets and moons, due to the low mass of such failed stars. To resolve this confusion, the International Astronomical Union declared, "Objects with true masses below the limiting mass for thermonuclear fusion of deuterium, that orbit stars or stellar remnants, are planets."[3]
Characteristics
Characteristics of any extrasolar satellite are likely to vary, as do the Solar System's moons. For extrasolar giant planets orbiting within their stellar habitable zone, there is a prospect a terrestrial-planet-sized satellite may be capable of supporting life.[4]
Orbital inclination
For impact-generated moons of terrestrial planets not too far from their star, with a large planet–moon distance, it is expected that the orbital planes of moons will tend to be aligned with the planet's orbit around the star due to tides from the star, but if the planet–moon distance is small it may be inclined. For gas giants, the orbits of moons will tend to be aligned with the giant planet's equator because these formed in circumplanetary disks.[5]
Lack of moons around planets close to their stars
Planets close to their stars on circular orbits will tend to despin and become tidally locked. As the planet's rotation slows down the radius of a synchronous orbit of the planet moves outwards from the planet. For planets tidally locked to their stars, the distance from the planet at which the moon will be in a synchronous orbit around the planet is outside the Hill sphere of the planet. The Hill sphere of the planet is the region where its gravity dominates that of the star so it can hold on to its moons. Moons inside the synchronous orbit radius of a planet will spiral into the planet. Therefore, if the synchronous orbit is outside the Hill sphere, then all moons will spiral into the planet. If the synchronous orbit is not three-body stable then moons outside this radius will escape orbit before they reach the synchronous orbit.[5]
Proposed detection methods
The existence of exomoons around many exoplanets is theorized.[4] Despite the great successes of planet hunters with Doppler spectroscopy of the host star,[6] exomoons cannot be found with this technique. This is because the resultant shifted stellar spectra due to the presence of a planet plus additional satellites would behave identically to a single point-mass moving in orbit of the host star. In recognition of this, there have been several other methods proposed for detecting exomoons, including:
- Direct imaging
- Doppler spectroscopy of host planet
- Microlensing
- Pulsar timing
- Transit timing effects
- Transit method
Direct imaging
Direct imaging of an exoplanet is extremely challenging due to the large difference in brightness between the star and exoplanet as well as the small size and irradiance of the planet. These problems are greater for exomoons in most cases. However, it has been theorized that tidally heated exomoons could shine as brightly as some exoplanets. Tidal forces can heat up an exomoon because energy is dissipated by differential forces on it. Io, a tidally heated moon orbiting Jupiter, has volcanoes powered by tidal forces. If a tidally heated exomoon is sufficiently tidally heated and is distant enough from its star for the moon's light not to be drowned out, it would be possible for future telescopes (such as the James Webb Space Telescope) to image it.[7]
Doppler spectroscopy of host planet
The spectra of exoplanets have been successfully partially retrieved for several cases, including HD 189733 b and HD 209458 b. The quality of the retrieved spectra is significantly more affected by noise than the stellar spectrum. As a result, the spectral resolution, and number of retrieved spectral features, is much lower than the level required to perform doppler spectroscopy of the exoplanet.
Detection of radio wave emissions from the magnetosphere of host planet
During its orbit, Io’s ionosphere interacts with Jupiter’s magnetosphere, to create a frictional current that causes radio wave emissions. These are called “Io-controlled decametric emissions” and the researchers believe finding similar emissions near known exoplanets could be key to predicting where other moons exist.[8]
Microlensing
In 2002, Cheongho Han & Wonyong Han proposed microlensing be used to detect exomoons.[9] The authors found detecting satellite signals in lensing light curves will be very difficult because the signals are seriously smeared out by the severe finite-source effect even for events involved with source stars with small angular radii.
Pulsar timing
In 2008, Lewis, Sackett, and Mardling[10] of the Monash University, Australia, proposed using pulsar timing to detect the moons of pulsar planets. The authors applied their method to the case of PSR B1620-26 b and found that a stable moon orbiting this planet could be detected, if the moon had a separation of about one fiftieth of that of the orbit of the planet around the pulsar, and a mass ratio to the planet of 5% or larger.
Transit timing effects
In 2009, University College London-based astronomer David Kipping published a paper[2][11] outlining how by combining multiple observations of variations in the time of mid-transit (TTV, caused by the planet leading or trailing the planet–moon system's barycenter when the pair are oriented roughly perpendicular to the line of sight) with variations of the transit duration (TDV, caused by the planet moving along the direction path of transit relative to the planet–moon system's barycenter when the moon–planet axis lies roughly along the line of sight) a unique exomoon signature is produced. Furthermore, the work demonstrated how both the mass of the exomoon and its orbital distance from the planet could be determined using the two effects.
In a later study, Kipping concluded that habitable zone exomoons could be detected by the Kepler Space Telescope[12] using the TTV and TDV effects.
Transit method
When an exoplanet passes in front of the host star, a small dip in the light received from the star may be observed. This effect, also known as occultation, is proportional to the square of the planet's radius. If a planet and a moon passed in front of a host star, both objects should produce a dip in the observed light.[13] A planet–moon eclipse may also occur[14] during the transit, but such events have an inherently low probability.
Orbital sampling effects
If a glass bottle is held up to the light it is easier to see through the middle of the glass than it is near the edges. Similarly a sequence of samples of a moon's position will be more bunched up at the edges of the moon's orbit of a planet than in the middle. If a moon orbits a planet that transits its star then the moon will also transit the star and this bunching up at the edges may be detectable in the transit light curves if a sufficient number of measurements are made. The larger the star the greater the number of measurements are needed to create observable bunching. The Kepler spacecraft data may contain enough data to detect moons around red dwarfs using orbital sampling effects but won't have enough data for Sun-like stars.[15][16]
Candidates
It has been surmised that the star 1SWASP J140747.93-394542.6, in the constellation Centaurus, might have a planet with a moon.[17] The confirmed extrasolar planet WASP-12b may also possess a moon.[18]
In December 2013, a candidate exomoon of a free-floating planet MOA-2011-BLG-262, was announced, but due to degeneracies in the modelling of the microlensing event, the observations can also be explained as a Neptune-mass planet orbiting a low-mass red dwarf, a scenario the authors consider to be more likely.[19][20][21] This candidate also featured in the news a few months later in April 2014.
List
Host star of the host planet | Planet designation/order | Planet mass (Mj) | Semimajor axis (AU) | Exomoon semimajor axis (AU) | Exomoon mass (Me) | Notes |
---|---|---|---|---|---|---|
1SWASP J140747.93-394542.6 | J1407b[22] | 14–26 | 2.2–5.6 | 0.40 | <0.8 | Possible exomoon residing in a large ring gap around J1407b |
1SWASP J140747.93-394542.6 | J1407b[22] | 14–26 | 2.2–5.6 | 0.24 | <0.3 | Possible exomoon residing in a small ring gap around J1407b |
1SWASP J140747.93-394542.6 | J1407b[22] | 14–26 | 2.2–5.6 | 0.25 | <0.3 | Possible exomoon residing in a small ring gap around J1407b |
WASP-12 | b[23] | 1.35–1.43 | 0.0221–0.0237 | ? | 0.57–6.4 | Found by studying periodic increases and decreases in light given off from WASP-12b |
Rogue planet | MOA-2011-BLG-262[24] | <189 | N/A | ? | 8–46 | Found by microlensing; however it is unknown if the system is a low Neptune-mass planet orbiting a free floating planet, or a low Jupiter-mass planet orbiting a low-mass red dwarf. |
Kepler-1625 | Kepler-1625b | ≈10? | 0.85 | 0.0023 | Possible Neptune-sized exomoon or Double planet, indicated by transit observations |
Detection projects
As part of the Kepler mission, the Hunt for Exomoons with Kepler (HEK) project is intended to detect exomoons.[25][26]
Habitability
Habitability of exomoons has been considered in at least two studies published in peer-reviewed journals. René Heller & Rory Barnes[27] considered stellar and planetary illumination on moons as well as the effect of eclipses on their orbit-averaged surface illumination. They also considered tidal heating as a threat for their habitability. In Sect. 4 in their paper, they introduce a new concept to define the habitable orbits of moons. Referring to the concept of the circumstellar habitable zone for planets, they define an inner border for a moon to be habitable around a certain planet and call it the circumplanetary "habitable edge". Moons closer to their planet than the habitable edge are uninhabitable. In a second study, René Heller[28] then included the effect of eclipses into this concept as well as constraints from a satellite's orbital stability. He found that, depending on a moon's orbital eccentricity, there is a minimum mass for stars to host habitable moons at around 0.2 solar masses.
Taking as an example the smaller Europa, at less than 1% the mass of the Earth, Lehmer et al. found if it were to end up near to Earth orbit it would only be able to hold onto its atmosphere for a few million years. However, for any larger, Ganymede-sized moons venturing into its solar system’s habitable zone, an atmosphere and surface water could be retained pretty much indefinitely. Models for moon formation suggest the formation of even more massive moons than Ganymede is common around many of the super-Jovian exoplanets.[29]
See also
References
- 1 2 Woo, Marcus (27 January 2015). "Why We’re Looking for Alien Life on Moons, Not Just Planets". Wired. Retrieved 27 January 2015.
- 1 2 Kipping D. M. (2009). "Transit timing effects due to an exomoon". Monthly Notices of the Royal Astronomical Society. 392 (3): 181–189. Bibcode:2009MNRAS.392..181K. arXiv:0810.2243 . doi:10.1111/j.1365-2966.2008.13999.x.
- ↑ "Position statement on the definition of a planet by the International Astronomical Union". International Astronomical Union. Retrieved 11 November 2008.
- 1 2 Canup, R.; Ward, W. (2006). "A common mass scaling relation for satellite systems of gaseous planets". Nature. 441 (7095): 834–839. Bibcode:2006Natur.441..834C. PMID 16778883. doi:10.1038/nature04860.
- 1 2 Moon formation and orbital evolution in extrasolar planetary systems-A literature review, K Lewis – EPJ Web of Conferences, 2011 – epj-conferences.org
- ↑ "The Exoplanet Catalogue". Jean Schneider. Retrieved 11 November 2008.
- ↑ Limbach, Mary Anne; Edwin Turner (June 2013). "On the Direct Imaging of Tidally Heated Exomoons". The Astrophysical Journal. Mary Ann Liebert, Inc. 769 (2): 98–105. Bibcode:2013ApJ...769...98P. arXiv:1209.4418 . doi:10.1088/0004-637X/769/2/98.
- ↑ http://www.uta.edu/news/releases/2014/08/exomoon-research.php
- ↑ Han C.; Han W. (2002). "On the Feasibility of Detecting Satellites of Extrasolar Planets via Microlensing". The Astrophysical Journal. 580 (1): 490–493. Bibcode:2002ApJ...580..490H. arXiv:astro-ph/0207372 . doi:10.1086/343082.
- ↑ Lewis K. M.; Sackett P. S.; Mardling R. A. (2008). "Possibility of Detecting Moons of Pulsar Planets through Time-of-Arrival Analysis". The Astrophysical Journal Letters. 685 (2): L153–L156. Bibcode:2008ApJ...685L.153L. arXiv:0805.4263 . doi:10.1086/592743.
- ↑ "Hunting for Exoplanet Moons". Centauri Dreams. Retrieved 11 November 2008.
- ↑ Kipping D. M.; Fossey S. J.; Campanella G. (2009). "On the detectability of habitable exomoons with Kepler-class photometry". Monthly Notices of the Royal Astronomical Society. 400 (1): 398–405. Bibcode:2009MNRAS.400..398K. arXiv:0907.3909 . doi:10.1111/j.1365-2966.2009.15472.x.
- ↑ Simon A., Szatmary, K. & Szabo Gy. M. (2007). "Determination of the size, mass, and density of exomoons from photometric transit timing variations". Astronomy and Astrophysics. 480 (2): 727–731. arXiv:0705.1046 .
- ↑ Cabrera J.; Schneider J. (2007). "Detecting companions to extrasolar planets using mutual events". Astronomy and Astrophysics. 464 (3): 1133–1138. Bibcode:2007A&A...464.1133C. arXiv:astro-ph/0703609 . doi:10.1051/0004-6361:20066111.
- ↑ Detecting extrasolar moons akin to solar system satellites with an orbital sampling effect, René Heller, (Submitted on 24 Mar 2014 (v1), last revised 30 Apr 2014 (this version, v2))
- ↑ New Exomoon Hunting Technique Could Find Solar System-like Moons, 05/12/14, Adam Hadhazy, Astrobiology Magazine
- ↑ – "Mamajek thinks his team could be either observing the late stages of planet formation if the transiting object is a star or brown dwarf, or possibly moon formation if the transiting object is a giant planet"
- ↑ Российские астрономы впервые открыли луну возле экзопланеты (in Russian) – "Studying of a curve of change of shine of WASP-12b has brought to the Russian astronomers unusual result: regular splashes were found out.<...> Though stains on a star surface also can cause similar changes of shine, observable splashes are very similar on duration, a profile and amplitude that testifies for benefit of exomoon existence."
- ↑ Bennett, D.P.; et al. "A Sub-Earth-Mass Moon Orbiting a Gas Giant Primary or a High Velocity Planetary System in the Galactic Bulge". The Astrophysical Journal. 785: 155. Bibcode:2014ApJ...785..155B. arXiv:1312.3951 . doi:10.1088/0004-637X/785/2/155.
- ↑ Clavin, Whitney (10 April 2014). "Faraway Moon or Faint Star? Possible Exomoon Found". NASA. Retrieved 10 April 2014.
- ↑ "First exomoon glimpsed – 1800 light years from Earth". New Scientist. Retrieved 20 December 2013.
- 1 2 3 "1SWASP J1407 b". Extrasolar Planets Encyclopaedia. exoplanet.eu. Retrieved 1 February 2015.
- ↑ "WASP-12 b". Extrasolar Planets Encyclopaedia. exoplanet.eu. Retrieved 1 February 2015.
- ↑ "MOA-2011-BLG-262". Extrasolar Planets Encyclopaedia. exoplanet.eu. Retrieved 1 February 2015.
- ↑ Lozano, Sharon; Dunbar, Brian (30 January 2015). "NASA Supercomputer Assists the Hunt for Exomoons". NASA. Retrieved 31 January 2015.
- ↑ Nesvorny, David; et al. "The Detection and Characterization of a Nontransiting Planet by Transit Timing Variations". Science. 336 (6085): 1133–1136. Bibcode:2012Sci...336.1133N. PMID 22582018. arXiv:1208.0942 . doi:10.1126/science.1221141. Retrieved 31 January 2015.
- ↑ Heller, René; Rory Barnes (January 2013). "Exomoon habitability constrained by illumination and tidal heating". Astrobiology. Mary Ann Liebert, Inc. 13 (1): 18–46. Bibcode:2013AsBio..13...18H. PMC 3549631 . PMID 23305357. arXiv:1209.5323 . doi:10.1089/ast.2012.0859.
- ↑ Heller, René (September 2012). "Exomoon habitability constrained by energy flux and orbital stability". Astronomy and Astrophysics. 545: L8. Bibcode:2012A&A...545L...8H. arXiv:1209.0050 . doi:10.1051/0004-6361/201220003.
- ↑ http://iopscience.iop.org/article/10.3847/1538-4357/aa67ea/meta The Longevity of Water Ice on Ganymedes and Europas around Migrated Giant Planets
External links
Media related to Extrasolar moons at Wikimedia Commons
- Shadow Moons: The Unknown Sub-Worlds that Might Harbor Life
- Likely First Photo of Planet Beyond the Solar System
- Working Group on Extrasolar Planets – Definition of a "Planet" Position statement on the definition of a planet. (IAU)
- The Hunt for Exomoons with Kepler (HEK): I. Description of a New Observational Project