Expander mixing lemma

The expander mixing lemma states that, for any two subsets of a d-regular expander graph with vertices, the number of edges between and is approximately what you would expect in a random d-regular graph, i.e. .

Statement

Let be a d-regular graph on n vertices with the second-largest eigenvalue (in absolute value) of the adjacency matrix. For any two subsets , let be the number of edges between S and T (counting edges contained in the intersection of S and T twice). Then

For biregular graphs, we have the following variation.[1]

Let be a bipartite graph such that every vertex in is adjacent to vertices of and every vertex in is adjacent to vertices of . Let with and . Let . Then

Note that is the largest absolute value of the eigenvalues of .

Proof

Let be the adjacency matrix for . For a vertex subset , let . Here is the standard basis element of with a one in the position. Thus in particular , and the number of edges between and is given by .

Expand each of and into a component in the direction of the largest-eigenvalue eigenvector and an orthogonal component:

,

where . Then

.

The conclusion follows, since , and .

Converse

Bilu and Linial showed[2] that the converse holds as well: if a graph satisfies the conclusion of the expander mixing lemma, that is, for any two subsets ,

then its second-largest eigenvalue is .

Notes

  1. See Theorem 5.1 in "Interlacing Eigenvalues and Graphs" by Haemers
  2. Expander mixing lemma converse

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.