Examples of data mining

Data mining has been used in many applications. The following are some notable examples of usage:

Games

Since the early 1960s, with the availability of oracles for certain combinatorial games, also called tablebases (e.g. for 3x3-chess) with any beginning configuration, small-board dots-and-boxes, small-board-hex, and certain endgames in chess, dots-and-boxes, and hex; a new area for data mining has been opened. This is the extraction of human-usable strategies from these oracles. Current pattern recognition approaches do not seem to fully acquire the high level of abstraction required to be applied successfully. Instead, extensive experimentation with the tablebases – combined with an intensive study of tablebase-answers to well designed problems, and with knowledge of prior art (i.e., pre-tablebase knowledge) – is used to yield insightful patterns. Berlekamp (in dots-and-boxes, etc.) and John Nunn (in chess endgames) are notable examples of researchers doing this work, though they were not – and are not – involved in tablebase generation.

Business

In business, data mining is the analysis of historical business activities, stored as static data in data warehouse databases. The goal is to reveal hidden patterns and trends. Data mining software uses advanced pattern recognition algorithms to sift through large amounts of data to assist in discovering previously unknown strategic business information. Examples of what businesses use data mining is to include performing market analysis to identify new product bundles, finding the root cause of manufacturing problems, to prevent customer attrition and acquire new customers, cross-selling to existing customers, and profiling customers with more accuracy.[1]

Science and engineering

In recent years, data mining has been used widely in the areas of science and engineering, such as bioinformatics, genetics, medicine, education and electrical power engineering.

Human rights

Data mining of government records – particularly records of the justice system (i.e., courts, prisons) – enables the discovery of systemic human rights violations in connection to generation and publication of invalid or fraudulent legal records by various government agencies.[23][24]

Medical data mining

Some machine learning algorithms can be applied in medical field as second-opinion diagnostic tools and as tools for the knowledge extraction phase in the process of knowledge discovery in databases. One of these classifiers (called Prototype exemplar learning classifier (PEL-C)[25] is able to discover syndromes as well as atypical clinical cases.

In 2011, the case of Sorrell v. IMS Health, Inc., decided by the Supreme Court of the United States, ruled that pharmacies may share information with outside companies. This practice was authorized under the 1st Amendment of the Constitution, protecting the "freedom of speech."[26] However, the passage of the Health Information Technology for Economic and Clinical Health Act (HITECH Act) helped to initiate the adoption of the electronic health record (EHR) and supporting technology in the United States.[27] The HITECH Act was signed into law on February 17, 2009 as part of the American Recovery and Reinvestment Act (ARRA) and helped to open the door to medical data mining.[28] Prior to the signing of this law, estimates of only 20% of United States-based physicians were utilizing electronic patient records.[27] Søren Brunak notes that “the patient record becomes as information-rich as possible” and thereby “maximizes the data mining opportunities.”[27] Hence, electronic patient records further expands the possibilities regarding medical data mining[29] thereby opening the door to a vast source of medical data analysis.

Spatial data mining

Spatial data mining is the application of data mining methods to spatial data. The end objective of spatial data mining is to find patterns in data with respect to geography. So far, data mining and Geographic Information Systems (GIS) have existed as two separate technologies, each with its own methods, traditions, and approaches to visualization and data analysis. Particularly, most contemporary GIS have only very basic spatial analysis functionality. The immense explosion in geographically referenced data occasioned by developments in IT, digital mapping, remote sensing, and the global diffusion of GIS emphasizes the importance of developing data-driven inductive approaches to geographical analysis and modeling.

Data mining offers great potential benefits for GIS-based applied decision-making. Recently, the task of integrating these two technologies has become of critical importance, especially as various public and private sector organizations possessing huge databases with thematic and geographically referenced data begin to realize the huge potential of the information contained therein. Among those organizations are:

Challenges in Spatial mining: Geospatial data repositories tend to be very large. Moreover, existing GIS datasets are often splintered into feature and attribute components that are conventionally archived in hybrid data management systems. Algorithmic requirements differ substantially for relational (attribute) data management and for topological (feature) data management.[30] Related to this is the range and diversity of geographic data formats, which present unique challenges. The digital geographic data revolution is creating new types of data formats beyond the traditional "vector" and "raster" formats. Geographic data repositories increasingly include ill-structured data, such as imagery and geo-referenced multi-media.[31]

There are several critical research challenges in geographic knowledge discovery and data mining. Miller and Han[32] offer the following list of emerging research topics in the field:

Temporal data mining

Data may contain attributes generated and recorded at different times. In this case finding meaningful relationships in the data may require considering the temporal order of the attributes. A temporal relationship may indicate a causal relationship, or simply an association.

Sensor data mining

Wireless sensor networks can be used for facilitating the collection of data for spatial data mining for a variety of applications such as air pollution monitoring.[33] A characteristic of such networks is that nearby sensor nodes monitoring an environmental feature typically register similar values. This kind of data redundancy due to the spatial correlation between sensor observations inspires the techniques for in-network data aggregation and mining. By measuring the spatial correlation between data sampled by different sensors, a wide class of specialized algorithms can be developed to develop more efficient spatial data mining algorithms.[34]

Visual data mining

In the process of turning from analog into digital, large data sets have been generated, collected, and stored discovering statistical patterns, trends and information which is hidden in data, in order to build predictive patterns. Studies suggest visual data mining is faster and much more intuitive than is traditional data mining.[35][36][37] See also Computer vision.

Music data mining

Data mining techniques, and in particular co-occurrence analysis, has been used to discover relevant similarities among music corpora (radio lists, CD databases) for purposes including classifying music into genres in a more objective manner.[38]

Surveillance

Data mining has been used by the U.S. government. Programs include the Total Information Awareness (TIA) program, Secure Flight (formerly known as Computer-Assisted Passenger Prescreening System (CAPPS II)), Analysis, Dissemination, Visualization, Insight, Semantic Enhancement (ADVISE),[39] and the Multi-state Anti-Terrorism Information Exchange (MATRIX).[40] These programs have been discontinued due to controversy over whether they violate the 4th Amendment to the United States Constitution, although many programs that were formed under them continue to be funded by different organizations or under different names.[41]

In the context of combating terrorism, two particularly plausible methods of data mining are "pattern mining" and "subject-based data mining".

Pattern mining

"Pattern mining" is a data mining method that involves finding existing patterns in data. In this context patterns often means association rules. The original motivation for searching association rules came from the desire to analyze supermarket transaction data, that is, to examine customer behavior in terms of the purchased products. For example, an association rule "beer ⇒ potato chips (80%)" states that four out of five customers that bought beer also bought potato chips.

In the context of pattern mining as a tool to identify terrorist activity, the National Research Council provides the following definition: "Pattern-based data mining looks for patterns (including anomalous data patterns) that might be associated with terrorist activity — these patterns might be regarded as small signals in a large ocean of noise."[42][43][44] Pattern Mining includes new areas such a Music Information Retrieval (MIR) where patterns seen both in the temporal and non temporal domains are imported to classical knowledge discovery search methods.

Subject-based data mining

"Subject-based data mining" is a data mining method involving the search for associations between individuals in data. In the context of combating terrorism, the National Research Council provides the following definition: "Subject-based data mining uses an initiating individual or other datum that is considered, based on other information, to be of high interest, and the goal is to determine what other persons or financial transactions or movements, etc., are related to that initiating datum."[43]

Knowledge grid

Knowledge discovery "On the Grid" generally refers to conducting knowledge discovery in an open environment using grid computing concepts, allowing users to integrate data from various online data sources, as well make use of remote resources, for executing their data mining tasks. The earliest example was the Discovery Net,[45][46] developed at Imperial College London, which won the "Most Innovative Data-Intensive Application Award" at the ACM SC02 (Supercomputing 2002) conference and exhibition, based on a demonstration of a fully interactive distributed knowledge discovery application for a bioinformatics application. Other examples include work conducted by researchers at the University of Calabria, who developed a Knowledge Grid architecture for distributed knowledge discovery, based on grid computing.[47][48]

References

  1. O'Brien, J. A., & Marakas, G. M. (2011). Management Information Systems. New York, NY: McGraw-Hill/Irwin.
  2. Alexander, D. (n.d.). Data Mining. Retrieved from The University of Texas at Austin: College of Liberal Arts: http://www.laits.utexas.edu/~anorman/BUS.FOR/course.mat/Alex/
  3. "Daniele Medri: Big Data & Business: An on-going revolution". Statistics Views. 21 Oct 2013.
  4. "Large Scale Item Categorization" (PDF).
  5. Goss, S. (2013, April 10). Data-mining and our personal privacy. Retrieved from The Telegraph: http://www.macon.com/2013/04/10/2429775/data-mining-and-our-personal-privacy.html
  6. Monk, Ellen; Wagner, Bret (2006). Concepts in Enterprise Resource Planning, Second Edition. Boston, MA: Thomson Course Technology. ISBN 0-619-21663-8. OCLC 224465825.
  7. 1 2 3 Elovici, Yuval; Braha, Dan (2003). "A Decision-Theoretic Approach to Data Mining" (PDF). IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans. 33 (1).
  8. Battiti, Roberto; and Brunato, Mauro; Reactive Business Intelligence. From Data to Models to Insight, Reactive Search Srl, Italy, February 2011. ISBN 978-88-905795-0-9.
  9. Battiti, Roberto; Passerini, Andrea (2010). "Brain-Computer Evolutionary Multi-Objective Optimization (BC-EMO): a genetic algorithm adapting to the decision maker" (PDF). IEEE Transactions on Evolutionary Computation. 14 (15): 671–687. doi:10.1109/TEVC.2010.2058118.
  10. Braha, Dan; Elovici, Yuval; Last, Mark (2007). "Theory of actionable data mining with application to semiconductor manufacturing control" (PDF). International Journal of Production Research. 45 (13).
  11. Fountain, Tony; Dietterich, Thomas; and Sudyka, Bill (2000); Mining IC Test Data to Optimize VLSI Testing, in Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM Press, pp. 18–25
  12. Braha, Dan; Shmilovici, Armin (2002). "Data Mining for Improving a Cleaning Process in the Semiconductor Industry" (PDF). IEEE Transactions on Semiconductor Manufacturing. 15 (1).
  13. Braha, Dan; Shmilovici, Armin (2003). "On the Use of Decision Tree Induction for Discovery of Interactions in a Photolithographic Process" (PDF). IEEE Transactions on Semiconductor Manufacturing. 16 (4).
  14. Zhu, Xingquan; Davidson, Ian (2007). Knowledge Discovery and Data Mining: Challenges and Realities. New York, NY: Hershey. p. 18. ISBN 978-1-59904-252-7.
  15. 1 2 McGrail, Anthony J.; Gulski, Edward; Allan, David; Birtwhistle, David; Blackburn, Trevor R.; Groot, Edwin R. S. "Data Mining Techniques to Assess the Condition of High Voltage Electrical Plant". CIGRÉ WG 15.11 of Study Committee 15.
  16. Baker, Ryan S. J. d. "Is Gaming the System State-or-Trait? Educational Data Mining Through the Multi-Contextual Application of a Validated Behavioral Model". Workshop on Data Mining for User Modeling 2007.
  17. Superby Aguirre, Juan Francisco; Vandamme, Jean-Philippe; Meskens, Nadine. "Determination of factors influencing the achievement of the first-year university students using data mining methods". Workshop on Educational Data Mining 2006.
  18. Zhu, Xingquan; Davidson, Ian (2007). Knowledge Discovery and Data Mining: Challenges and Realities. New York, NY: Hershey. pp. 163–189. ISBN 978-1-59904-252-7.
  19. Zhu, Xingquan; Davidson, Ian (2007). Knowledge Discovery and Data Mining: Challenges and Realities. New York, NY: Hershey. pp. 31–48. ISBN 978-1-59904-252-7.
  20. Chen, Yudong; Zhang, Yi; Hu, Jianming; Li, Xiang (2006). "Traffic Data Analysis Using Kernel PCA and Self-Organizing Map". IEEE Intelligent Vehicles Symposium.
  21. Bate, Andrew; Lindquist, Marie; Edwards, I. Ralph; Olsson, Sten; Orre, Roland; Lansner, Anders; de Freitas, Rogelio Melhado (Jun 1998). "A Bayesian neural network method for adverse drug reaction signal generation" (PDF). European Journal of Clinical Pharmacology. 54 (4): 315–21. PMID 9696956. doi:10.1007/s002280050466.
  22. Norén, G. Niklas; Bate, Andrew; Hopstadius, Johan; Star, Kristina; and Edwards, I. Ralph (2008); Temporal Pattern Discovery for Trends and Transient Effects: Its Application to Patient Records. Proceedings of the Fourteenth International Conference on Knowledge Discovery and Data Mining (SIGKDD 2008), Las Vegas, NV, pp. 963–971.
  23. Zernik, Joseph; Data Mining as a Civic Duty – Online Public Prisoners' Registration Systems, International Journal on Social Media: Monitoring, Measurement, Mining, 1: 84–96 (2010)
  24. Zernik, Joseph; Data Mining of Online Judicial Records of the Networked US Federal Courts, International Journal on Social Media: Monitoring, Measurement, Mining, 1:69–83 (2010)
  25. Gagliardi, F (2011). "Instance-based classifiers applied to medical databases: Diagnosis and knowledge extraction". Artificial Intelligence in Medicine. 52 (3): 123–139. doi:10.1016/j.artmed.2011.04.002.
  26. David G. Savage (2011-06-24). "Pharmaceutical industry: Supreme Court sides with pharmaceutical industry in two decisions". Los Angeles Times. Retrieved 2012-11-07.
  27. 1 2 3 Analyzing Medical Data. (2012). Communications of the ACM 55(6), 13-15. doi:10.1145/2184319.2184324
  28. http://searchhealthit.techtarget.com/definition/HITECH-Act
  29. https://www.cogneesol.com/data-mining-services
  30. Healey, Richard G. (1991); Database Management Systems, in Maguire, David J.; Goodchild, Michael F.; and Rhind, David W., (eds.), Geographic Information Systems: Principles and Applications, London, GB: Longman
  31. Camara, Antonio S.; and Raper, Jonathan (eds.) (1999); Spatial Multimedia and Virtual Reality, London, GB: Taylor and Francis
  32. Miller, Harvey J.; and Han, Jiawei (eds.) (2001); Geographic Data Mining and Knowledge Discovery, London, GB: Taylor & Francis
  33. Ma, Y.; Richards, M.; Ghanem, M.; Guo, Y.; Hassard, J. (2008). "Air Pollution Monitoring and Mining Based on Sensor Grid in London". Sensors. 8 (6): 3601. doi:10.3390/s8063601.
  34. Ma, Y.; Guo, Y.; Tian, X.; Ghanem, M. (2011). "Distributed Clustering-Based Aggregation Algorithm for Spatial Correlated Sensor Networks". IEEE Sensors Journal. 11 (3): 641. doi:10.1109/JSEN.2010.2056916.
  35. Zhao, Kaidi; and Liu, Bing; Tirpark, Thomas M.; and Weimin, Xiao; A Visual Data Mining Framework for Convenient Identification of Useful Knowledge
  36. Keim, Daniel A.; Information Visualization and Visual Data Mining
  37. Burch, Michael; Diehl, Stephan; Weißgerber, Peter; Visual Data Mining in Software Archives
  38. Pachet, François; Westermann, Gert; and Laigre, Damien; Musical Data Mining for Electronic Music Distribution, Proceedings of the 1st WedelMusic Conference, Firenze, Italy, 2001, pp. 101–106.
  39. Government Accountability Office, Data Mining: Early Attention to Privacy in Developing a Key DHS Program Could Reduce Risks, GAO-07-293 (February 2007), Washington, DC
  40. Secure Flight Program report, MSNBC
  41. "Total/Terrorism Information Awareness (TIA): Is It Truly Dead?". Electronic Frontier Foundation (official website). 2003. Retrieved 2009-03-15.
  42. Agrawal, Rakesh; Mannila, Heikki; Srikant, Ramakrishnan; Toivonen, Hannu; and Verkamo, A. Inkeri; Fast discovery of association rules, in Advances in knowledge discovery and data mining, MIT Press, 1996, pp. 307–328
  43. 1 2 National Research Council, Protecting Individual Privacy in the Struggle Against Terrorists: A Framework for Program Assessment, Washington, DC: National Academies Press, 2008
  44. Haag, Stephen; Cummings, Maeve; Phillips, Amy (2006). Management Information Systems for the information age. Toronto: McGraw-Hill Ryerson. p. 28. ISBN 0-07-095569-7. OCLC 63194770.
  45. Ghanem, Moustafa; Guo, Yike; Rowe, Anthony; Wendel, Patrick (2002). "Grid-based knowledge discovery services for high throughput informatics". Proceedings 11th IEEE International Symposium on High Performance Distributed Computing. p. 416. ISBN 0-7695-1686-6. doi:10.1109/HPDC.2002.1029946.
  46. Ghanem, Moustafa; Curcin, Vasa; Wendel, Patrick; Guo, Yike (2009). "Building and Using Analytical Workflows in Discovery Net". Data Mining Techniques in Grid Computing Environments. p. 119. ISBN 9780470699904. doi:10.1002/9780470699904.ch8.
  47. Cannataro, Mario; Talia, Domenico (January 2003). "The Knowledge Grid: An Architecture for Distributed Knowledge Discovery" (PDF). Communications of the ACM. 46 (1): 89–93. doi:10.1145/602421.602425. Retrieved 17 October 2011.
  48. Talia, Domenico; Trunfio, Paolo (July 2010). "How distributed data mining tasks can thrive as knowledge services" (PDF). Communications of the ACM. 53 (7): 132–137. doi:10.1145/1785414.1785451. Retrieved 17 October 2011.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.