Essential range

In mathematics, particularly measure theory, the essential range of a function is intuitively the 'non-negligible' range of the function: It does not change between two functions that are equal almost everywhere. One way of thinking of the essential range of a function is the set on which the range of the function is most 'concentrated'. The essential range can be defined for measurable real or complex-valued functions on a measure space.

Formal definition

Let f be a Borel-measurable, complex-valued function defined on a measure space . Then the essential range of f is defined to be the set:

In other words: The essential range of a complex-valued function is the set of all complex numbers z such that the inverse image of each ε-neighbourhood of z under f has positive measure.

Properties

.

Examples

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.