List of conjectures by Paul Erdős

The prolific mathematician Paul Erdős and his various collaborators made many famous mathematical conjectures, over a wide field of subjects, and in many cases Erdős offered monetary rewards for solving them.

Unsolved

Solved

See also

References

  1. Erdős, P.; Hajnal, A. (1989), "Ramsey-type theorems", Combinatorics and complexity (Chicago, IL, 1987), Discrete Appl. Math., 25 (1-2): 37–52, MR 1031262, doi:10.1016/0166-218X(89)90045-0.
  2. Hajnal, A.; Szemerédi, E. (1970), "Proof of a conjecture of P. Erdős", Combinatorial theory and its applications, II (Proc. Colloq., Balatonfüred, 1969), North-Holland, pp. 601–623, MR 0297607.
  3. Sárközy, A. (1978), "On difference sets of sequences of integers. II", Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae, 21: 45–53 (1979), MR 536201.
  4. Deza, M. (1974), "Solution d'un problème de Erdős-Lovász", Journal of Combinatorial Theory, Series B (in French), 16: 166–167, MR 0337635, doi:10.1016/0095-8956(74)90059-8.
  5. da Silva, Dias; A., J.; Hamidoune, Y. O. (1994), "Cyclic spaces for Grassmann derivatives and additive theory", Bulletin of the London Mathematical Society, 26 (2): 140–146, doi:10.1112/blms/26.2.140.
  6. Croot, Ernest S., III (2000), Unit Fractions, Ph.D. thesis, University of Georgia, Athens. Croot, Ernest S., III (2003), "On a coloring conjecture about unit fractions", Annals of Mathematics, 157 (2): 545–556, arXiv:math.NT/0311421Freely accessible, doi:10.4007/annals.2003.157.545.
  7. Luca, Florian (2001), "On a conjecture of Erdős and Stewart", Mathematics of Computation, 70 (234): 893–896, MR 1677411, doi:10.1090/S0025-5718-00-01178-9.
  8. Sapozhenko, A. A. (2003), "The Cameron-Erdős conjecture", Doklady Akademii Nauk, 393 (6): 749–752, MR 2088503. Green, Ben (2004), "The Cameron-Erdős conjecture", Bulletin of the London Mathematical Society, 36 (6): 769–778, MR 2083752, arXiv:math.NT/0304058Freely accessible, doi:10.1112/S0024609304003650.
  9. Aharoni, Ron; Berger, Eli (2009), "Menger's Theorem for infinite graphs", Inventiones Mathematicae, 176: 1–62, doi:10.1007/s00222-008-0157-3.
  10. Guth, l.; Katz, N. H. (2010), On the Erdős distinct distance problem on the plane, arXiv:1011.4105Freely accessible.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.