Energy density Extended Reference Table
This is extended version of energy density table from the main page energy density:
Storage type | Specific energy (MJ/kg) | Energy density (MJ/L) | Peak recovery efficiency % | Practical recovery efficiency % |
---|---|---|---|---|
Arbitrary Antimatter | 89,875,517,874 | depends on density | ||
Deuterium-tritium fusion | 576,000,000 | |||
Uranium-235 used in nuclear weapons | 144,000,000 | 1,500,000,000 | ||
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor | 86,000,000 | |||
Reactor-grade uranium (3.5% U-235) in light water reactor | 3,456,000 | 30% | ||
Pu-238 α-decay | 2,200,000 | |||
Hf-178m2 isomer | 1,326,000 | 17,649,060 | ||
Natural uranium (0.7% U235) in light water reactor | 443,000 | 30% | ||
Ta-180m isomer | 41,340 | 689,964 | ||
Metallic hydrogen (recombination energy) | 216[1] | |||
Lithium-air battery (battery) | 43.2 | |||
Specific orbital energy of Low Earth orbit (approximate) | 33.0 | |||
Beryllium + Oxygen | 23.9[2] | |||
Lithium + Fluorine | 23.75 | |||
Hydrogen + Oxygen | 13.43 | |||
Octaazacubane potential explosive | 22.9[3] | |||
Dinitroacetylene explosive - computed | 9.8 | |||
Octanitrocubane explosive | 8.5[4] | 16.9[5] | ||
Tetranitrotetrahedrane explosive - computed | 8.3 | |||
Heptanitrocubane explosive - computed | 8.2 | |||
Sodium (reacted with chlorine) | 7.0349 | |||
Hexanitrobenzene explosive | 7[6] | |||
Tetranitrocubane explosive - computed | 6.95 | |||
Ammonal (Al+NH4NO3 oxidizer) | 6.9 | 12.7 | ||
Tetranitromethane + hydrazine bipropellant - computed | 6.6 | |||
Nitroglycerin | 6.38[7] | 10.2[8] | ||
ANFO-ANNM | 6.26 | |||
Octogen (HMX) | 5.7[7] | 10.8[9] | ||
TNT [Kinney, G.F.; K.J. Graham (1985). Explosive shocks in air. Springer-Verlag. ISBN 3-540-15147-8.] | 4.610 | 6.92 | ||
Copper Thermite (Al + CuO as oxidizer) | 4.13 | 20.9 | ||
Thermite (powder Al + Fe2O3 as oxidizer) | 4.00 | 18.4 | ||
Hydrogen peroxide decomposition (as monopropellant) | 2.7 | 3.8 | ||
battery, Lithium ion nanowire | 2.54 | 95%[10] | ||
battery, Lithium Thionyl Chloride (LiSOCl2)[11] | 2.5 | |||
Water 220.64 bar, 373.8°C | 1.968 | 0.708 | ||
Kinetic energy penetrator | 1.9 | 30 | ||
battery, Fluoride ion | 1.7 | 2.8 | ||
battery, Hydrogen closed cycle H fuel cell[12] | 1.62 | |||
Hydrazine(toxic) decomposition (as monopropellant) | 1.6 | 1.6 | ||
Ammonium nitrate decomposition (as monopropellant) | 1.4 | 2.5 | ||
Thermal Energy Capacity of Molten Salt | 1 | 98%[13] | ||
Molecular spring approximate | 1 | |||
battery, Sodium Sulfur | .72[14] | 1.23 | 85%[15] | |
battery, Lithium-manganese[16][17] | 0.83-1.01 | 1.98-2.09 | ||
battery, Lithium ion[18][19] | 0.46-0.72 | 0.83-3.6[20] | 95%[21] | |
battery, Lithium Sulphur[22] | 1.80[23] | 1.80 | ||
battery (Sodium Nickel Chloride), High Temperature | 0.56 | |||
battery, Silver-oxide[16] | 0.47 | 1.8 | ||
Flywheel | 0.36-0.5[24][25] | |||
5.56 × 45 mm NATO bullet | 0.4 | 3.2 | ||
battery, Nickel metal hydride (NiMH), low power design as used in consumer batteries[26] | 0.4 | 1.55 | ||
battery, Zinc-manganese (alkaline), long life design[16][18] | 0.4-0.59 | 1.15-1.43 | ||
Liquid Nitrogen | 0.349 | |||
Water - Enthalpy of Fusion | 0.334 | 0.334 | ||
battery, Zinc Bromine flow (ZnBr)[27] | 0.27 | |||
battery, Nickel metal hydride (NiMH), High Power design as used in cars[28] | 0.250 | 0.493 | ||
battery, Nickel cadmium (NiCd)[18] | 0.14 | 1.08 | 80%[21] | |
battery, Zinc-Carbon[18] | 0.13 | 0.331 | ||
battery, Lead acid[18] | 0.14 | 0.36 | ||
battery, Vanadium redox | 0.09 | 0.1188 | 70-75% | |
battery, Vanadium Bromide redox | 0.18 | 0.252 | 80%–90%[29] | |
Capacitor Ultracapacitor | 0.0199[30] | 0.050 | ||
Capacitor Supercapacitor | 0.01 | 80%–98.5%[31] | 39%–70%[31] | |
Superconducting magnetic energy storage | 0.008[32] | >95% | ||
Capacitor | 0.002[33] | |||
Neodymium magnet | 0.003[34] | |||
Ferrite magnet | 0.0003[34] | |||
Spring power (clock spring), torsion spring | 0.0003[35] | 0.0006 | ||
Storage type | Energy density by mass (MJ/kg) | Energy density by volume (MJ/L) | Peak recovery efficiency % | Practical recovery efficiency % |
Notes
- ↑ http://iopscience.iop.org/1742-6596/215/1/012194/pdf/1742-6596_215_1_012194.pdf
- ↑ "The Heat of Formation of Beryllium Oxide1 - Journal of the American Chemical Society (ACS Publications)". Pubs.acs.org. 2002-05-01. Retrieved 2010-05-07.
- ↑ "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?† - Inorganic Chemistry (ACS Publications)". Pubs.acs.org. 1996-05-28. Retrieved 2010-05-07.
- ↑ http://www3.interscience.wiley.com/journal/122324589/abstract
- ↑ Octanitrocubane
- ↑ http://www3.interscience.wiley.com/journal/109618256/abstract
- 1 2 "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07.
- ↑ Nitroglycerin
- ↑ HMX
- ↑ "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. Retrieved 2010-05-07.
- ↑ "Lithium Thionyl Chloride Batteries". Nexergy. Retrieved 2010-05-07.
- ↑ "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Retrieved 2010-05-07.
- ↑ "Technology". SolarReserve. Retrieved 2010-05-07.
- ↑ "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. Retrieved 2010-05-07.
- ↑ "Energy Citations Database (ECD) - - Document #5960185". Osti.gov. Retrieved 2010-05-07.
- 1 2 3 "ProCell Lithium battery chemistry". Duracell. Archived from the original on 2011-07-10. Retrieved 2009-04-21.
- ↑ "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21.
- 1 2 3 4 5 "Battery energy storage in various battery types". AllAboutBatteries.com. Retrieved 2009-04-21.
- ↑ A typically available lithium ion cell with an Energy Density of 201 wh/kg
- ↑ "Lithium Batteries". Retrieved 2010-07-02.
- 1 2 Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF). p. 7. Retrieved 2009-02-26.
Table 3: Input and Output Energy from Batteries
- ↑ "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power, Inc. 2005-09-28. Archived from the original (PDF) on 2008-08-28.
- ↑ Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Maik Nauka/Interperiodica/Springer: 506–509. doi:10.1134/s1023193508050029.
- ↑ Storage Technology Report, ST6 Flywheel
- ↑ "Next-gen Of Flywheel Energy Storage". Product Design & Development. Retrieved 2009-05-21.
- ↑ Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008
- ↑ "ZBB Energy Corp". Archived from the original on 2007-10-15.
75 to 85 watt-hours per kilogram
- ↑ High Energy Metal Hydride Battery
- ↑ "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc" (PDF). Retrieved 2010-05-07.
- ↑ "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. Retrieved 2010-05-07.
- 1 2 http://www2.fs.cvut.cz/web/fileadmin/documents/12241-BOZEK/publikace/2004/Sup-Cap-Energy-Storage.pdf
- ↑ Archived February 16, 2010, at the Wayback Machine.
- ↑ http://www.doc.ic.ac.uk/~mpj01/ise2grp/energystorage_report/node9.html
- 1 2 http://www.askmar.com/Magnets/Promising%20Magnet%20Applications.pdf
- ↑ "Garage Door Springs". Garagedoor.org. Retrieved 2010-05-07.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.