Information Age

The Information Age (also known as the Computer Age, Digital Age, or New Media Age) is a period in human history characterized by the shift from traditional industry that the Industrial Revolution brought through industrialization, to an economy based on information computerization. The onset of the Information Age is associated with the Digital Revolution, just as the Industrial Revolution marked the onset of the Industrial Age.[1][2] The definition of what digital means (or what information means) continues to change over time as new technologies, user devices, methods of interaction with other humans and devices enter the domain of research, development and market launch.

During the Information Age, the phenomenon is that the digital industry creates a knowledge-based society surrounded by a high-tech global economy that spans over its influence on how the manufacturing throughout and the service sector operate in an efficient and convenient way. In a commercialized society, the information industry is able to allow individuals to explore their personalized needs, therefore simplifying the procedure of making decisions for transactions and significantly lowering costs for both the producers and buyers. This is accepted overwhelmingly by participants throughout the entire economic activities for efficacy purposes, and new economic incentives would then be indigenously encouraged, such as the knowledge economy.[3]

The Information Age formed by capitalizing on computer microminiaturization advances.[4] This evolution of technology in daily life and social organization has led to the fact that the modernization of information and communication processes has become the driving force of social evolution.[2]

Progression

Library expansion

Library expansion was calculated in 1945 by Fremont Rider to double in capacity every 16 years, if sufficient space were made available.[5] He advocated replacing bulky, decaying printed works with miniaturized microform analog photographs, which could be duplicated on-demand for library patrons or other institutions. He did not foresee the digital technology that would follow decades later to replace analog microform with digital imaging, storage, and transmission media. Automated, potentially lossless digital technologies allowed vast increases in the rapidity of information growth. Moore's law, which was formulated around 1965, calculated that the number of transistors in a dense integrated circuit doubles approximately every two years.[6]

The proliferation of the smaller and less expensive personal computers and improvements in computing power by the early 1980s resulted in a sudden access to and ability to share and store information for increasing numbers of workers. Connectivity between computers within companies led to the ability of workers at different levels to access greater amounts of information.

Information storage

The world's technological capacity to store information grew from 2.6 (optimally compressed) exabytes in 1986 to 15.8 in 1993, over 54.5 in 2000, and to 295 (optimally compressed) exabytes in 2007. This is the informational equivalent to less than one 730-MB CD-ROM per person in 1986 (539 MB per person), roughly 4 CD-ROM per person of 1993, 12 CD-ROM per person in the year 2000, and almost 61 CD-ROM per person in 2007.[7] It is estimated that the world's capacity to store information has reached 5 zettabytes in 2014.[8] This is the informational equivalent of 4,500 stacks of printed books from the earth to the sun.

Information transmission

The world's technological capacity to receive information through one-way broadcast networks was 432 exabytes of (optimally compressed) information in 1986, 715 (optimally compressed) exabytes in 1993, 1.2 (optimally compressed) zettabytes in 2000, and 1.9 zettabytes in 2007 (this is the information equivalent of 174 newspapers per person per day).[7] The world's effective capacity to exchange information through two-way telecommunication networks was 281 petabytes of (optimally compressed) information in 1986, 471 petabytes in 1993, 2.2 (optimally compressed) exabytes in 2000, and 65 (optimally compressed) exabytes in 2007 (this is the information equivalent of 6 newspapers per person per day).[7] In the 1990s, the spread of the Internet caused a sudden leap in access to and ability to share information in businesses and homes globally. Technology was developing so quickly that a computer costing $3000 in 1997 would cost $2000 two years later and $1000 the following year.

Computation

The world's technological capacity to compute information with humanly guided general-purpose computers grew from 3.0 × 108 MIPS in 1986, to 4.4 × 109 MIPS in 1993, 2.9 × 1011 MIPS in 2000 to 6.4 × 1012 MIPS in 2007.[7] An article in the recognized Journal Trends in Ecology and Evolution reports that by now digital technology "has vastly exceeded the cognitive capacity of any single human being and has done so a decade earlier than predicted. In terms of capacity, there are two measures of importance: the number of operations a system can perform and the amount of information that can be stored. The number of synaptic operations per second in a human brain has been estimated to lie between 10^15 and 10^17. While this number is impressive, even in 2007 humanity's general-purpose computers were capable of performing well over 10^18 instructions per second. Estimates suggest that the storage capacity of an individual human brain is about 10^12 bytes. On a per capita basis, this is matched by current digital storage (5x10^21 bytes per 7.2x10^9 people)".[8]

Relation to economics

Eventually, Information and Communication Technology—computers, computerized machinery, fiber optics, communication satellites, Internet, and other ICT tools—became a significant part of the economy. Microcomputers were developed and many businesses and industries were greatly changed by ICT.

Nicholas Negroponte captured the essence of these changes in his 1995 book, Being Digital.[9] His book discusses similarities and differences between products made of atoms and products made of bits. In essence, a copy of a product made of bits can be made cheaply and quickly, and shipped across the country or internationally quickly and at very low cost.

Impact on jobs and income distribution

The Information Age has affected the workforce in several ways. It has created a situation in which workers who perform easily automated tasks are forced to find work that is not easily automated.[10] Workers are also being forced to compete in a global job market. Lastly, workers are being replaced by computers that can do their jobs faster and more effectively. This poses problems for workers in industrial societies, which are still to be solved. However, solutions that involve lowering the working time are usually highly resisted.

Jobs traditionally associated with the middle class (assembly line workers, data processors, foremen and supervisors) are beginning to disappear, either through outsourcing or automation. Individuals who lose their jobs must either move up, joining a group of "mind workers" (engineers, doctors, attorneys, teachers, scientists, professors, executives, journalists, consultants), or settle for low-skill, low-wage service jobs.

The "mind workers" are able to compete successfully in the world market and receive high wages. Conversely, production workers and service workers in industrialized nations are unable to compete with workers in developing countries and either lose their jobs through outsourcing or are forced to accept wage cuts.[11] In addition, the internet makes it possible for workers in developing countries to provide in-person services and compete directly with their counterparts in other nations.

This has had several major consequences, including increased opportunity in developing countries and the globalization of the workforce.

Workers in developing countries have a competitive advantage that translates into increased opportunities and higher wages.[12] The full impact on the workforce in developing countries is complex and has downsides. (see discussion in section on Globalization).

In the past, the economic fate of workers was tied to the fate of national economies. For example, workers in the United States were once well paid in comparison to the workers in other countries. With the advent of the Information Age and improvements in communication, this is no longer the case. Because workers are forced to compete in a global job market, wages are less dependent on the success or failure of individual economies.[11]

Automation, productivity and job gain

The Information Age has affected the workforce in that automation and computerization have resulted in higher productivity coupled with net job loss in manufacture. In the United States for example, from January 1972 to August 2010, the number of people employed in manufacturing jobs fell from 17,500,000 to 11,500,000 while manufacturing value rose 270%.[13]

Although it initially appeared that job loss in the industrial sector might be partially offset by the rapid growth of jobs in the IT sector, the recession of March 2001 foreshadowed a sharp drop in the number of jobs in the IT sector. This pattern of decrease in jobs continued until 2003.[14]

Data has shown that overall, technology creates more jobs than it destroys even in the short run.[15]

Rise of information-intensive industry

Industry is becoming more information-intensive and less labor and capital-intensive (see Information industry). This trend has important implications for the workforce; workers are becoming increasingly productive as the value of their labor decreases. However, there are also important implications for capitalism itself; not only is the value of labor decreased, the value of capital is also diminished. In the classical model, investments in human capital and financial capital are important predictors of the performance of a new venture.[16] However, as demonstrated by Mark Zuckerberg and Facebook, it now seems possible for a group of relatively inexperienced people with limited capital to succeed on a large scale.[17]

Innovations

The Information Age was enabled by technology developed in the Digital Revolution, which was itself enabled by building on the developments in the Technological Revolution.

Computers

Before the advent of electronics, mechanical computers, like the Analytical Engine in 1837, were designed to provide routine mathematical calculation and simple decision-making capabilities. Military needs during World War II drove development of the first electronic computers, based on vacuum tubes, including the Z3, the Atanasoff–Berry Computer, Colossus computer, and ENIAC.

The invention of the transistor in 1947 enabled the era of mainframe computers (1950s – 1970s), typified by the IBM 360. These large, room-sized computers provided data calculation and manipulation that was much faster than humanly possible, but were expensive to buy and maintain, so were initially limited to a few scientific institutions, large corporations, and government agencies. As transistor technology rapidly improved, the ratio of computing power to size increased dramatically, giving direct access to computers to ever smaller groups of people.

Along with electronic arcade machines and home video game consoles in the 1970s, the development of personal computers like the Commodore PET and Apple II (both in 1977) gave individuals access to the computer. But data sharing between individual computers was either non-existent or largely manual, at first using punched cards and magnetic tape, and later floppy disks.

Data

The first developments for storing data were initially based on photographs, starting with microphotography in 1851 and then microform in the 1920s, with the ability to store documents on film, making them much more compact. In the 1970s, electronic paper allowed digital information appear as paper documents.

Early information theory and Hamming codes were developed about 1950, but awaited technical innovations in data transmission and storage to be put to full use. While cables transmitting digital data connected computer terminals and peripherals to mainframes were common, and special message-sharing systems leading to email were first developed in the 1960s, independent computer-to-computer networking began with ARPANET in 1969. This expanded to become the Internet (coined in 1974), and then the World Wide Web in 1989.

Public digital data transmission first utilized existing phone lines using dial-up, starting in the 1950s, and this was the mainstay of the Internet until broadband in the 2000s. The introduction of wireless networking in the 1990s combined with the proliferation of communications satellites in the 2000s allowed for public digital transmission without the need for cables. This technology led to digital television, GPS, and satellite radio through the 1990s and 2000s.

Computers continued to become smaller and more powerful, to the point where they could be carried. In the 1980s and 1990s, laptops were developed as a form of portable computers, and PDAs could be used while standing or walking. Pagers existing since the 1950s, were largely replaced by mobile phones beginning in the late 1990s, providing mobile networking features to some computers. Now commonplace, this technology is extended to digital cameras and other wearable devices. Starting in the late 1990s, tablets and then smartphones combined and extended these abilities of computing, mobility, and information sharing.

Optics

Optical communication has played an important role in communication networks.[18] Optical communication provided the hardware basis for internet technology, laying the foundations for the Digital Revolution and Information Age.[19]

While working at Tohoku University, Japanese engineer Jun-ichi Nishizawa proposed fiber-optic communication, the use of optical fibers for optical communication, in 1963.[20] Nishizawa invented other technologies that contributed to the development of optical fiber communications, such as the graded-index optical fiber as a channel for transmitting light from semiconductor lasers.[21][22] He patented the graded-index optical fiber in 1964.[19] The solid-state optical fiber was invented by Nishizawa in 1964.[23]

The three essential elements of optical communication were invented by Jun-ichi Nishizawa: the semiconductor laser (1957) being the light source, the graded-index optical fiber (1964) as the transmission line, and the PIN photodiode (1950) as the optical receiver.[19] Izuo Hayashi's invention of the continuous wave semiconductor laser in 1970 led directly to the light sources in fiber-optic communication, laser printers, barcode readers, and optical disc drives, commercialized by Japanese entrepreneurs,[24] and opening up the field of optical communications.[18]

See also

References

  1. Castells, M. (1999). The Information Age, Volumes 1-3: Economy, Society and Culture. Cambridge (Mass.); Oxford: Wiley-Blackwell.
  2. 1 2 Hilbert, M. (2015). Digital Technology and Social Change [Open Online Course at the University of California] (freely available). Retrieved from https://canvas.instructure.com/courses/949415
  3. "Technology and Workforce: Comparison between the Information Revolution and the Industrial Revolution" by Mathias Humbert, University of California, Berkeley
  4. Kluver, Randy. "Globalization, Informatization, and Intercultural Communication". United Nations Public Administration Network. Retrieved 18 April 2013.
  5. Rider (1944). The Scholar and the Future of the Research Library. New York City: Hadham Press.
  6. "Moore's Law to roll on for another decade". Retrieved 2011-11-27. Moore also affirmed he never said transistor count would double every 18 months, as is commonly said. Initially, he said transistors on a chip would double every year. He then recalibrated it to every two years in 1975. David House, an Intel executive at the time, noted that the changes would cause computer performance to double every 18 months.
  7. 1 2 3 4 Hilbert, Martin; López, Priscila (2011). "The World's Technological Capacity to Store, Communicate, and Compute Information". Science. 332 (6025): 60–65. Bibcode:2011Sci...332...60H. ISSN 0036-8075. PMID 21310967. doi:10.1126/science.1200970.
  8. 1 2 Gillings, Michael R.; Hilbert, Martin; Kemp, Darrell J. (2016). "Information in the Biosphere: Biological and Digital Worlds". Trends in Ecology & Evolution. 31 (3): 180–189. doi:10.1016/j.tree.2015.12.013.
  9. "Negroponte's articles". Archives.obs-us.com. 1996-12-30. Retrieved 2012-06-11.
  10. Porter, Michael. "How Information Gives You Competitive Advantage". Harvard Business Review. Retrieved 9 September 2015.
  11. 1 2 McGowan, Robert (1991). "The work of nations: Preparing ourselves for the 21st century capitalism, by Robert Reich. New York: Knopf Publishing, 1991". Human Resource Management. 30 (4): 535–538. ISSN 1099-050X. doi:10.1002/hrm.3930300407.
  12. Bhagwati, Jagdish N. (2005). In defense of Globalization. New York: Oxford University Press.
  13. "U.S. Manufacturing : Output vs. Jobs, January 1972 to August 2010 ". BLS and Fed Reserve graphic, reproduced in Smith, Fran. "Job Losses and Productivity Gains", OpenMarket.org, Oct 05, 2010.
  14. Cooke, Sandra D. "Information Technology Workers in the Digital Economy", in Digital Economy 2003. 2003: Economics and Statistics Administration, Department of Commerce.
  15. Yongsung, Chang; Hong (July 2013). "Jay H.". SERI Quarterly. 6 (3): 44–53. Retrieved 29 April 2014.
  16. Cooper, Arnold C.; Gimeno-Gascon, F. Javier; Woo, Carolyn Y. (1994). "Initial human and financial capital as predictors of new venture performance". Journal of Business Venturing. 9 (5): 371–395. doi:10.1016/0883-9026(94)90013-2.
  17. Carr, David (2010-10-03). "Film Version of Zuckerberg Divides the Generations". The New York Times. ISSN 0362-4331. Retrieved 2016-12-20.
  18. 1 2 S. Millman (1983), A History of Engineering and Science in the Bell System, page 10, AT&T Bell Laboratories
  19. 1 2 3 The Third Industrial Revolution Occurred in Sendai, Soh-VEHE International Patent Office, Japan Patent Attorneys Association
  20. Nishizawa, Jun-ichi & Suto, Ken (2004). "Terahertz wave generation and light amplification using Raman effect". In Bhat, K. N. & DasGupta, Amitava. Physics of semiconductor devices. New Delhi, India: Narosa Publishing House. p. 27. ISBN 81-7319-567-6.
  21. "Optical Fiber". Sendai New. Archived from the original on September 29, 2009. Retrieved April 5, 2009.
  22. "New Medal Honors Japanese Microelectrics Industry Leader". Institute of Electrical and Electronics Engineers.
  23. Semiconductor Technologies, page 338, Ohmsha, 1982
  24. Johnstone, Bob (2000). We were burning : Japanese entrepreneurs and the forging of the electronic age. New York: BasicBooks. p. 252. ISBN 9780465091188.
  25. "Newspapers News and News Archive Resources: Computer and Technology Sources". Temple University. Retrieved 9 September 2015.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.