Eisenstein prime

Small Eisenstein primes. Those on the green axes are associate to a natural prime of the form 3n  1. All others have an absolute value squared equal to a natural prime.
Eisenstein primes in a larger range.

In mathematics, an Eisenstein prime is an Eisenstein integer

that is irreducible (or equivalently prime) in the ring-theoretic sense: its only Eisenstein divisors are the units (±1, ±ω, ±ω2), a + bω itself and its associates.

The associates (unit multiples) and the complex conjugate of any Eisenstein prime are also prime.

Characterization

An Eisenstein integer z = a + bω is an Eisenstein prime if and only if either of the following (mutually exclusive) conditions hold:

  1. z is equal to the product of a unit and a natural prime of the form 3n  1,
  2. |z|2 = a2 ab + b2 is a natural prime (necessarily congruent to 0 or 1 modulo 3).

It follows that the absolute value squared of every Eisenstein prime is a natural prime or the square of a natural prime.

In base 12, the natural Eisenstein primes are exactly the natural primes end with 5 or Ɛ (i.e. the natural primes congruent to 2 mod 3), the natural Gaussian primes are exactly the natural primes end with 7 or Ɛ (i.e. the natural primes congruent to 3 mod 4).

Examples

The first few Eisenstein primes that equal a natural prime 3n  1 are:

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, ... (sequence A003627 in the OEIS).

Natural primes that are congruent to 0 or 1 modulo 3 are not Eisenstein primes: they admit nontrivial factorizations in Z[ω]. For example:

3 = (1 + 2ω)2
7 = (3 + ω)(2  ω).

Some non-real Eisenstein primes are

2 + ω, 3 + ω, 4 + ω, 5 + 2ω, 6 + ω, 7 + ω, 7 + 3ω.

Up to conjugacy and unit multiples, the primes listed above, together with 2 and 5, are all the Eisenstein primes of absolute value not exceeding 7.

Large primes

As of March 2017, the largest known (real) Eisenstein prime is the seventh largest known prime 10223 × 231172165 + 1, discovered by Péter Szabolcs and PrimeGrid.[1] All larger known primes are Mersenne primes, discovered by GIMPS. Real Eisenstein primes are congruent to 2 mod 3, and Mersenne primes (except the smallest, 3) are congruent to 1 mod 3; thus no Mersenne prime is an Eisenstein prime.

See also

References

  1. Chris Caldwell, "The Top Twenty: Largest Known Primes" from The Prime Pages. Retrieved 2017-03-14.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.