ENC1

ENC1
Identifiers
AliasesENC1, CCL28, ENC-1, KLHL35, KLHL37, NRPB, PIG10, TP53I10, ectodermal-neural cortex 1
External IDsMGI: 109610 HomoloGene: 2694 GeneCards: ENC1
Orthologs
SpeciesHumanMouse
Entrez

8507

13803

Ensembl

ENSG00000171617

ENSMUSG00000041773

UniProt

O14682

O35709

RefSeq (mRNA)

NM_001256574
NM_001256575
NM_001256576
NM_003633

NM_007930

RefSeq (protein)

NP_001243503
NP_001243504
NP_001243505
NP_003624

NP_031956

Location (UCSC)Chr 5: 74.63 – 74.64 MbChr 13: 97.24 – 97.25 Mb
PubMed search[1][2]
Wikidata
View/Edit HumanView/Edit Mouse

Ectoderm-neural cortex protein 1 is a protein that in humans is encoded by the ENC1 gene.[3][4][5]

Function

DNA damage and/or hyperproliferative signals activate wildtype p53 tumor suppressor protein (TP53; MIM 191170), inducing cell cycle arrest or apoptosis. Mutations that inactivate p53 occur in 50% of all tumors. Polyak et al. (1997) used serial analysis of gene expression (SAGE) to evaluate cellular mRNA levels in a colorectal cancer cell line transfected with p53. Of 7,202 transcripts identified, only 14 were expressed at levels more than 10-fold higher in p53-expressing cells than in control cells. Polyak et al. (1997) termed these genes 'p53-induced genes,' or PIGs, several of which were predicted to encode redox-controlling proteins. They noted that reactive oxygen species (ROS) are potent inducers of apoptosis. Flow cytometric analysis showed that p53 expression induces ROS production, which increases as apoptosis progresses under some conditions. The authors stated that the PIG10 gene, also called ENC1, encodes an actin-binding protein.[supplied by OMIM][5]

Interactions

ENC1 has been shown to interact with Retinoblastoma protein.[4]

Model organisms

Model organisms have been used in the study of ENC1 function. A conditional knockout mouse line called Enc1tm1a(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute.[6] Male and female animals underwent a standardized phenotypic screen[7] to determine the effects of deletion.[8][9][10][11] Additional screens performed: - In-depth immunological phenotyping[12]

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (Sep 1997). "A model for p53-induced apoptosis". Nature. 389 (6648): 300–5. PMID 9305847. doi:10.1038/38525.
  4. 1 2 Kim TA, Lim J, Ota S, Raja S, Rogers R, Rivnay B, Avraham H, Avraham S (May 1998). "NRP/B, a novel nuclear matrix protein, associates with p110(RB) and is involved in neuronal differentiation". The Journal of Cell Biology. 141 (3): 553–66. PMC 2132755Freely accessible. PMID 9566959. doi:10.1083/jcb.141.3.553.
  5. 1 2 "Entrez Gene: ENC1 ectodermal-neural cortex (with BTB-like domain)".
  6. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  7. 1 2 "International Mouse Phenotyping Consortium".
  8. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. PMC 3572410Freely accessible. PMID 21677750. doi:10.1038/nature10163.
  9. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. PMID 21677718. doi:10.1038/474262a.
  10. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. PMID 17218247. doi:10.1016/j.cell.2006.12.018.
  11. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. PMC 3717207Freely accessible. PMID 23870131. doi:10.1016/j.cell.2013.06.022.
  12. 1 2 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading

  • Hernandez MC, Andres-Barquin PJ, Holt I, Israel MA (Aug 1998). "Cloning of human ENC-1 and evaluation of its expression and regulation in nervous system tumors". Experimental Cell Research. 242 (2): 470–7. PMID 9683534. doi:10.1006/excr.1998.4109. 
  • Hernandez MC, Andres-Barquin PJ, Kuo WL, Israel MA (2000). "Assignment of the ectodermal-neural cortex 1 gene (ENC1) to human chromosome band 5q13 by in situ hybridization". Cytogenetics and Cell Genetics. 87 (1-2): 89–90. PMID 10640818. doi:10.1159/000015398. 
  • Zhao L, Gregoire F, Sul HS (Jun 2000). "Transient induction of ENC-1, a Kelch-related actin-binding protein, is required for adipocyte differentiation". The Journal of Biological Chemistry. 275 (22): 16845–50. PMID 10828068. doi:10.1074/jbc.275.22.16845. 
  • Kim TA, Ota S, Jiang S, Pasztor LM, White RA, Avraham S (Sep 2000). "Genomic organization, chromosomal localization and regulation of expression of the neuronal nuclear matrix protein NRP/B in human brain tumors". Gene. 255 (1): 105–16. PMID 10974570. doi:10.1016/S0378-1119(00)00297-3. 
  • Fujita M, Furukawa Y, Tsunoda T, Tanaka T, Ogawa M, Nakamura Y (Nov 2001). "Up-regulation of the ectodermal-neural cortex 1 (ENC1) gene, a downstream target of the beta-catenin/T-cell factor complex, in colorectal carcinomas". Cancer Research. 61 (21): 7722–6. PMID 11691783. 
  • Hammarsund M, Lerner M, Zhu C, Merup M, Jansson M, Gahrton G, Kluin-Nelemans H, Einhorn S, Grandér D, Sangfelt O, Corcoran M (Dec 2004). "Disruption of a novel ectodermal neural cortex 1 antisense gene, ENC-1AS and identification of ENC-1 overexpression in hairy cell leukemia". Human Molecular Genetics. 13 (23): 2925–36. PMID 15459180. doi:10.1093/hmg/ddh315. 
  • Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL (Mar 2005). "High-throughput mapping of a dynamic signaling network in mammalian cells". Science. 307 (5715): 1621–5. PMID 15761153. doi:10.1126/science.1105776. 
  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (Oct 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. PMID 16189514. doi:10.1038/nature04209. 
  • Seng S, Avraham HK, Jiang S, Yang S, Sekine M, Kimelman N, Li H, Avraham S (Sep 2007). "The nuclear matrix protein, NRP/B, enhances Nrf2-mediated oxidative stress responses in breast cancer cells". Cancer Research. 67 (18): 8596–604. PMID 17875699. doi:10.1158/0008-5472.CAN-06-3785. 
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.