Aluminium sulfate
Names | |
---|---|
IUPAC name
Aluminium sulfate | |
Other names
Cake alum Filter alum Papermaker's alum Alunogenite aluminum salt (3:2) | |
Identifiers | |
| |
3D model (JSmol) |
|
ChemSpider | |
ECHA InfoCard | 100.030.110 |
EC Number | 233-135-0 |
E number | E520 (acidity regulators, ...) |
PubChem CID |
|
RTECS number | BD1700000 |
UNII | |
| |
| |
Properties | |
Al2(SO4)3 | |
Molar mass | 342.15 g/mol (anhydrous) 666.44 g/mol (octadecahydrate) |
Appearance | white crystalline solid hygroscopic |
Density | 2.672 g/cm3 (anhydrous) 1.62 g/cm3 (octadecahydrate) |
Melting point | 770 °C (1,420 °F; 1,040 K) (decomposes, anhydrous) 86.5 °C (octadecahydrate) |
31.2 g/100 mL (0 °C) 36.4 g/100 mL (20 °C) 89.0 g/100 mL (100 °C) | |
Solubility | slightly soluble in alcohol, dilute mineral acids |
Acidity (pKa) | 3.3-3.6 |
-93.0·10−6 cm3/mol | |
Refractive index (nD) |
1.47[1] |
Structure | |
monoclinic (hydrate) | |
Thermochemistry | |
Std enthalpy of formation (ΔfH |
-3440 kJ/mol |
Hazards | |
Safety data sheet | See: data page |
NFPA 704 | |
US health exposure limits (NIOSH): | |
PEL (Permissible) |
none[2] |
REL (Recommended) |
2 mg/m3[2] |
IDLH (Immediate danger) |
N.D.[2] |
Related compounds | |
Other cations |
Gallium sulfate Magnesium sulfate |
Related compounds |
See Alum |
Supplementary data page | |
Refractive index (n), Dielectric constant (εr), etc. | |
Thermodynamic data |
Phase behaviour solid–liquid–gas |
UV, IR, NMR, MS | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Aluminium sulfate is a chemical compound with the formula Al2(SO4)3. It is soluble in water and is mainly used as a coagulating agent (promoting particle collision by neutralizing charge) in the purification of drinking water[3][4] and waste water treatment plants, and also in paper manufacturing.
Aluminium sulfate is sometimes referred to as a type of alum. Alums are double sulfate salts, with the formula AM(SO
4)
2·12H
2O, where A is a monovalent cation such as potassium or ammonium and M is a trivalent metal ion such as aluminium.[5] The anhydrous form occurs naturally as a rare mineral millosevichite, found e.g. in volcanic environments and on burning coal-mining waste dumps. Aluminium sulfate is rarely, if ever, encountered as the anhydrous salt. It forms a number of different hydrates, of which the hexadecahydrate Al2(SO4)3•16H2O and octadecahydrate Al2(SO4)3•18H2O are the most common. The heptadecahydrate, whose formula can be written as [Al(H2O)6]2(SO4)3•5H2O, occurs naturally as the mineral alunogen.
Preparation
Aluminium sulfate may be made by adding aluminium hydroxide, Al(OH)3, to sulfuric acid, H2SO4:
- 2 Al(OH)3 + 3 H2SO4 → Al2(SO4)3+6H2O
or by heating aluminum metal in a sulfuric acid solution:
- 2 Al(s) + 3 H2SO4 → Al2(SO4)3 + 3 H2 (g)
Uses
Aluminium sulfate is used in water purification and as a mordant in dyeing and printing textiles. In water purification, it causes impurities to coagulate into larger particles and then settle to the bottom of the container (or be filtered out) more easily. This process is called coagulation or flocculation. Research suggests that in Australia, aluminium sulfate used this way in drinking water treatment is the primary source of hydrogen sulfide gas in sanitary sewer systems.[6] An improper and excess application incident in 1988 polluted the water supply of Camelford in Cornwall.
When dissolved in a large amount of neutral or slightly alkaline water, aluminium sulfate produces a gelatinous precipitate of aluminium hydroxide, Al(OH)3. In dyeing and printing cloth, the gelatinous precipitate helps the dye adhere to the clothing fibers by rendering the pigment insoluble.
Aluminium sulfate is sometimes used to reduce the pH of garden soil, as it hydrolyzes to form the aluminium hydroxide precipitate and a dilute sulfuric acid solution. An example of what changing the pH level of soil can do to plants is visible when looking at Hydrangea macrophylla. The gardener can add aluminium sulfate to the soil to reduce the pH which in turn will result in the flowers of the Hydrangea turning a different color (blue). The aluminium is what makes the flowers blue; at a higher pH, the aluminium is not available to the plant. Thus, both the aluminium and sulfur keep the plants blue.
Aluminium potassium sulfate and another form of alum, aluminium ammonium sulfate, are the active ingredients in some antiperspirants; however, beginning in 2005 the US Food and Drug Administration no longer recognized it as a wetness reducer. Despite this, several countries, primarily in Asia, still use the widely available and cheap alum sulfate as a very effective cure for a medical condition known as Hyperhydrosis.
Aluminium potassium sulfate is usually found in baking powder.
In the construction industry, it is used as waterproofing agent and accelerator in concrete. Another use is a foaming agent in fire fighting foam.
It is also used in styptic pencils, and pain relief from stings and bites.
It can also be very effective as a molluscicide, killing spanish slugs.
It is used in dentistry (especially in gingival retraction cords) because of its astringent and hemostatic properties.
Mordants aluminium triacetate and aluminium sulfacetate can be prepared from aluminium sulfate, the product formed being determined by the amount of lead(II) acetate used:[7]
- Al
2(SO
4)
3 + 3 Pb(CH
3CO
2)
2 → 2 Al(CH
3CO
2)
3 + 3 PbSO
4
- Al
2(SO
4)
3 + 2 Pb(CH
3CO
2)
2 → Al
2SO
4(CH
3CO
2)
4 + 2 PbSO
4
Chemical reactions
The compound decomposes to γ−alumina and sulfur trioxide when heated between 580 and 900 °C. It combines with water forming hydrated salts of various compositions.
Aluminium sulfate reacts with sodium bicarbonate to which foam stabilizer has been added, producing carbon dioxide for fire-extinguishing foams:
- Al2(SO4)3 + 6 NaHCO3 → 3 Na2SO4 + 2 Al(OH)3 + 6 CO2
The carbon dioxide is trapped by the foam stabilizer and creates a thick foam which will float on top of hydrocarbon fuels and seal off access to atmospheric oxygen, smothering the fire. Chemical foam was unsuitable for use on polar solvents such as alcohol, as the fuel would mix with and break down the foam blanket. The carbon dioxide generated also served to propel the foam out of the container, be it a portable fire extinguisher or fixed installation using hoselines. Chemical foam is considered obsolete in the United States and has been replaced by synthetic mechanical foams, such as AFFF which have a longer shelf life, are more effective, and more versatile, although some countries such as Japan and India continue to use it.
References
Footnotes
- ↑ Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN 0-07-049439-8
- 1 2 3 "NIOSH Pocket Guide to Chemical Hazards #0024". National Institute for Occupational Safety and Health (NIOSH).
- ↑ Global Health and Education Foundation (2007). "Conventional Coagulation-Flocculation-Sedimentation". Safe Drinking Water is Essential. National Academy of Sciences. Retrieved 2007-12-01.
- ↑ Kvech S, Edwards M (2002). "Solubility controls on aluminum in drinking water at relatively low and high pH". Water Research. 36 (17): 4356–4368. PMID 12420940. doi:10.1016/S0043-1354(02)00137-9.
- ↑ Austin, George T. (1984). Shreve's Chemical process industries. (5th ed.). New York: McGraw-Hill. p. 357. ISBN 9780070571471.
- ↑ Ilje Pikaar, Keshab R. Sharma, Shihu Hu, Wolfgang Gernjak, Jürg Keller, Zhiguo Yuan. "Reducing sewer corrosion through integrated urban water management". Retrieved 2014-08-25.
- ↑ Georgievics, Von (2013). The Chemical Technology of Textile Fibres – Their Origin, Structure, Preparation, Washing, Bleaching, Dyeing, Printing and Dressing. Read Books. ISBN 9781447486121.
Notations
- Pauling, Linus (1970). General Chemistry. W.H. Freeman: San Francisco. ISBN 0-486-65622-5.
External links
- International Chemical Safety Card 1191
- NIOSH Pocket Guide to Chemical Hazards
- WHO Food Additive Series No. 12
- Aluminum and health
- Government of Canada Fact Sheets and Frequently Asked Questions: Aluminum Salts
Salts and esters of the sulfate ion | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2SO4 | He | ||||||||||||||||||
Li2SO4 | BeSO4 | B | esters ROSO3− (RO)2SO2 |
(NH4)2SO4 N2H6SO4 (NH3OH)2SO4 |
O | F | Ne | ||||||||||||
Na2SO4 NaHSO4 |
MgSO4 | Al2(SO4)3 Al2SO4(OAc)4 |
Si | P | SO42− | Cl | Ar | ||||||||||||
K2SO4 KHSO4 |
CaSO4 | Sc2(SO4)3 | Ti(SO4)2 TiOSO4 |
VSO4 V2(SO4)3 VOSO4 |
CrSO4 Cr2(SO4)3 |
MnSO4 Mn2(SO4)3 |
FeSO4 Fe2(SO4)3 |
CoSO4 Co2(SO4)3 |
NiSO4 | CuSO4 Cu2SO4 |
ZnSO4 | Ga2(SO4)3 | Ge | As | Se | Br | Kr | ||
RbHSO4 Rb2SO4 |
SrSO4 | Y2(SO4)3 | Zr(SO4)2 | Nb | Mo | Tc | Ru | Rh | PdSO4 | Ag2SO4 | CdSO4 | In2(SO4)3 | SnSO4 | Sb2(SO4)3 | Te | I | Xe | ||
Cs2SO4 | BaSO4 | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg2SO4 HgSO4 |
Tl2SO4 Tl2(SO4)3 |
PbSO4 | Bi2(SO4)3 | Po | At | Rn | |||
Fr | Ra | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |||
↓ | |||||||||||||||||||
La | Ce2(SO4)3 Ce(SO4)2 |
Pr2(SO4)3 | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb2(SO4)3 | Lu | |||||
Ac | Th | Pa | U(SO4)2 UO2SO4 |
Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |