Dunathan stereoelectronic hypothesis

Dunathan stereoelectronic hypothesis is a concept in chemistry to explain the stereospecefic cleavage of bonds using pyridoxal phosphate. This occurs because stereoelectronic effects controls the actions of the enzyme.[1]

History

Before the correlation between fold type and reaction correlation of proteins were understood, Harmon C. Dunathan, a chemist at Haverford College[2] proposed that the bond that is cleaved using pyridoxal is perpendicular to the system.[3] Though an important concept in bioorganic chemistry, it is now known that enzyme conformations play a critical role in the final chemical reaction.

Mode of action

The transition state is stabilized by the extended pi bond network (formation of anion).[4] Furthermore hyperconjugation caused by the extended network draws electrons from the bond to be cleaved, thus weakening the chemical bond and making it labile[5] The sigma bond that is parallel to the pi bond network will break.[6] The bond that has the highest chance of being cleaved is one with the largest HOMO-LUMO overlap.[7] This effect might be effected by electrostatic effects within the enzyme.[8]

Applications

This was seen in transferase and future interests lie in decarboxylation in various catalytic cycles.[9]

References


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.