Dual representation

In mathematics, if G is a group and ρ is a linear representation of it on the vector space V, then the dual representation ρ* is defined over the dual vector space V* as follows:[1]

ρ*(g) is the transpose of ρ(g−1), that is, ρ*(g) = ρ(g−1)T for all gG.

The dual representation is also known as the contragredient representation.

If g is a Lie algebra and π is a representation of it on the vector space V, then the dual representation π* is defined over the dual vector space V* as follows:[2]

π*(X) = −π(X)T for all Xg.

In both cases, the dual representation is a representation in the usual sense.

Motivation

In representation theory, both vectors in V and linear functionals in V* are considered as column vectors so that the representation can act (by matrix multiplication) from the left. Given a basis for V and the dual basis for V*, the action of a linear functional φ on v, φ(v) can be expressed by matrix multiplication,

,

where the superscript T is matrix transpose. Consistency requires

[3]

With the definition given,

.

For the Lie algebra representation one chooses consistency with a possible group representation. Generally, if Π is a representation of a Lie group, then π given by

is a representation of its Lie algebra. If Π* is dual to Π, then its corresponding Lie algebra representation π* is given by

.[4]

Generalization

A general ring module does not admit a dual representation. Modules of Hopf algebras do, however.

See also

References

  1. Lecture 1 of Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. 129. New York: Springer-Verlag. ISBN 978-0-387-97495-8. MR 1153249.
  2. Lecture 8 of Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. 129. New York: Springer-Verlag. ISBN 978-0-387-97495-8. MR 1153249.
  3. Lecture 1, page 4 of Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. 129. New York: Springer-Verlag. ISBN 978-0-387-97495-8. MR 1153249.
  4. Lecture 8, page 111 of Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. 129. New York: Springer-Verlag. ISBN 978-0-387-97495-8. MR 1153249.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.