Display motion blur

Display motion blur, also called HDTV blur and LCD motion blur, is a set of several different artifacts that is frequently found on modern consumer high-definition television sets and flat panel displays for computers.

Causes

Many motion blur factors have existed for a long time in film and video (e.g. slow camera shutter speed). The emergence of digital video, and HDTV display technologies, introduced many additional factors that now contribute to motion blur. The following factors are generally the primary or secondary causes of perceived motion blur in video. In many cases, multiple factors can occur at the same time within the entire chain, from the original media or broadcast, all the way to the receiver end.

Motion blur has been a more severe problem for LCD displays, due to their sample-and-hold nature.[3] Even in situations when pixel response time is very short, motion blur remains a problem because their pixels remain lit, unlike CRT phosphors that merely flash briefly. Reducing the time an LCD pixel is lit, can be accomplished via turning off the backlight for part of a refresh.[4] This reduces motion blur due to eye tracking by decreasing the time the backlight is on. In addition, strobed backlights can also be combined together with motion interpolation to reduce eye-tracking-based motion blur.[5][6]

Fixes

Strobed backlights

Different manufacturers use many names for their strobed backlight technologies for reducing motion blur on sample-and-hold LCD displays. Generic names include black frame insertion and scanning backlight.

Motion interpolation

Some displays use motion interpolation to run at a higher refresh rate, such as 100 Hz or 120 Hz to reduce motion blur. Motion interpolation generates artificial in-between frames that are inserted between the real frames. The advantage is reduced motion blur on sample-and-hold displays such as LCD.

There can be side-effects, including the soap opera effect if interpolation is enabled while watching movies (24fps material). Motion interpolation also adds input lag, which makes it undesirable for interactive activity such as computers and video games.[18]

Recently, 240 Hz interpolation have become available, along with displays that claim an equivalence to 480 Hz or 960 Hz. Some manufacturers use a different terminology such as Samsung's "Clear Motion Rate 960"[9] instead of "Hz". This avoids incorrect usage of the "Hz" terminology, due to multiple motion blur reduction technologies in use, including both motion interpolation and strobed backlights.

Manufacturer Terminology:

Laser TV

Laser TV has the potential to eliminate double imaging and motion artifacts by utilizing a scanning architecture similar to the way that a CRT works.[25] Laser TV is generally not yet available from many manufacturers. Claims have been made on television broadcasts such as KRON 4 News' Coverage of Laser TV from October 2006,[26] but no consumer-grade laser television sets have made any significant improvements in reducing any form of motion artifacts since that time. One recent development in laser display technology has been the phosphor-excited laser, as demonstrated by Prysm's newest displays. These displays currently scan at 240 Hz, but are currently limited to a 60 Hz input. This has the effect of presenting four distinct images when eye tracking a fast-moving object seen from a 60 Hz input source.[27]

There has also been Microvision's Laser MEMS Based Pico Projector Pro, which has no display lag, no input lag and no persistence or motion blur [28]

LED and OLED

Both OLED and Sony's Crystal LED displays use an independent light source for every pixel, without a traditional CCFL or LED backlight used in LCD. Sony's Crystal LED[29] uses individual light emitting diodes for each pixel, instead of using LED as a backlight. Several displays demonstrated at the CES 2012 have been the first modern high-definition television sets to overcome the motion artifacts by selectively blanking parts of the screen.[30] Both OLED and "Crystal LED" technologies also have response times far shorter than LCD technology, and can reduce motion blur significantly. However, all consumer OLED Displays are sample-and-hold,[2][31] which leads to the same amount of motion blur as a traditional LCD Display.

See also

References

  1. Charles Poynton is an authority on artifacts related to HDTV, and discusses motion artifacts succinctly and specifically
  2. 1 2 Eye-tracking-based motion blur on LCD
  3. Perceptually-motivated Real-time Temporal Upsampling of 3D Content for High-refresh-rate Displays
  4. Publishing from February 2006 from Sharp discussing LED flashing to reduce temporal retinal blur effects with decreasing on-time duty cycle for the backlight.
  5. PDF describing MPRT
  6. "Archived copy". Archived from the original on 2010-10-31. Retrieved 2012-10-03.
  7. Philips brochure advertising Aptura backlighting that reduces retinal blurring significantly Archived March 9, 2008, at the Wayback Machine.
  8. Review of a philips Aptura set that discusses Aptura briefly
  9. 1 2 Samsung Clear Motion Rate, including the use of a strobed backlight
  10. User manual for Samsung 81 Series TVs with LED Motion Plus technology Archived November 29, 2007, at the Wayback Machine.
  11. BenQ described "black frame insertion" on FP241VW monitor release in 2006
  12. BenQ describes "Simulated Pulse Drive" which seems to be the same technology but renamed for their newer monitor line announced December 2007
  13. Sharp Corporation scanning backlight Archived November 13, 2012, at the Wayback Machine.
  14. Elite LCD HDTV scanning backlight technology Archived September 22, 2012, at the Wayback Machine.
  15. High speed video of an nVidia LightBoost strobe backlight
  16. Eliminating motion blur using a strobe backlight normally designed for nVidia 3D Vision
  17. When to use G-Sync or ULMB?
  18. Resolving latency issues in HDTV video games
  19. JVC's Clear Motion Drive terminology
  20. LG's TruMotion terminology
  21. Samsung's Auto Motion Plus terminology Archived January 12, 2008, at the Wayback Machine.
  22. Sony's Motionflow terminology Archived December 8, 2008, at the Wayback Machine.
  23. Toshiba's Clear Frame terminology
  24. Sharp's AquoMotion terminology
  25. Evans and Southerland use column scanning laser to eliminate motion blur on their high-end laser projection system
  26. KRON 4 News in Bay Area covers coherent and novalux joint venture laser television project
  27. Prsym creates a laser-excited phosphor display marketed towards the advertising market and allows tiling of smaller displays
  28. Sony Develops Next-generation Display, "Crystal LED Display" Ideal for High Picture Quality on Large screens Archived February 14, 2012, at the Wayback Machine.
  29. Sony technical guy explains how Sony handles motion portrayal in OLED displays
  30. Why Do Some OLED's Have Motion Blur?
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.