Digoxigenin

Digoxigenin
Names
IUPAC name
3-[(3S,5R,8R,9S,10S,12R,13S,14S,17R)-3,12,14-trihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one
Identifiers
ChEBI
ChemSpider
ECHA InfoCard 100.015.279
Properties
C23H34O5
Molar mass 390.51 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Digoxigenin (DIG) is a steroid found exclusively in the flowers and leaves of the plants Digitalis purpurea, Digitalis orientalis and Digitalis lanata (foxgloves), where it is attached to sugars, to form the glycosides (e.g. Lanatoside C).[1]

Use in biotechnology

Digoxigenin is a hapten, a small molecule with high antigenicity, that is used in many molecular biology applications similarly to other popular haptens such as 2,4-Dinitrophenol, biotin, and fluorescein. Typically, digoxigenin is introduced chemically (conjugation) into biomolecules (proteins, nucleic acids) to be detected in further assays. Anti-digoxigenin antibodies with high affinities and specificity are used in a variety of biological immuno-assays (e.g. ELISA). The antibodies are labeled with dyes, enzymes or fluorescence, directly or secondarily, for visualization and detection.

Digoxigenin is thus an all-purpose immuno-tag, and in particular a standard immunohistochemical marker for in situ hybridization.[2][3] In this case it is conjugated to a single species of RNA nucleotide triphosphate (typically uridine), which is then incorporated into RNA (a "riboprobe") as it is synthesized by the cellular machinery.

It allows to make :

References

  1. Polya, G. (2003). Biochemical Targets of Plant Bioactive Compounds. New York: CRC Press. ISBN 978-0415308298.
  2. Eisel, D.; Grünewald-Janho, S.; Krushen, B., eds. (2002). DIG Application Manual for Nonradioactive in situ Hybridization (3rd ed.). Penzberg: Roche Diagnostics.
  3. Hauptmann, G.; Gerster, T. (1994). "Two-color whole-mount in situ hybridization to vertebrate and Drosophila embryos". Trends in Genetics. 10 (8): 266. PMID 7940754. doi:10.1016/0168-9525(90)90008-T.
  4. Hart, S. M.; Basu, C. (2009). "Optimization of a Digoxigenin-Based Immunoassay System for Gene Detection in Arabidopsis thaliana" (pdf). Journal of Biomolecular Techniques. 20 (2): 96–100. PMC 2685603Freely accessible. PMID 19503620.
  5. Décarie, A.; Drapeau, G.; Closset, J.; Couture, R.; Adam, A. (1994). "Development of a Digoxigenin-labeled Peptide: Application to a Chemiluminoenzyme Immunoassay of Bradykinin in Inflamed Tissues". Peptides. 15 (3): 511–518. PMID 7937327. doi:10.1016/0196-9781(94)90214-3.
  6. Mayilo, S.; Ehlers, B.; Wunderlich, M.; Klar, T. A.; Josel, H. P.; Heindl, D.; Nichtl, A.; Kürzinger, K.; Feldmann, J. (2009). "Competitive Homogeneous Digoxigenin Immunoassay Based on Fluorescence Quenching by Gold Nanoparticles". Analytica Chimica Acta. 646 (1–2): 119–122. PMID 19523564. doi:10.1016/j.aca.2009.05.023.
  7. Goodarzi, M. T.; Rafiq, M.; Turner, G. (1995). "An Improved Multiwell Immunoassay Using Digoxigenin-Labelled Lectins to Study the Glycosylation of Purified Glycoproteins". Biochemical Society Transactions. 23 (2): 168S. PMID 7672194. doi:10.1042/bst023168s.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.