Diadectomorpha

Diadectomorphs
Temporal range: Late Carboniferous–Wuchiapingian

[1]

Skeleton of Diadectes sideropelicus in the American Museum of Natural History
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Clade: Reptiliomorpha
Order: Diadectomorpha
Watson, 1917
Subgroups

See text.

Diadectomorpha are a clade of large reptile-like amphibians that lived in Euramerica during the Carboniferous and Early Permian periods and in Asia during Late Permian (Wuchiapingian),[1] and are very close to the ancestry of the Amniota. They include both large (up to 2 meters long) carnivorous and even larger (to 3 meters) herbivorous forms, some semi-aquatic and others fully terrestrial. The Diadectomorpha seem to have evolved during late Mississippian times, although they only became common after the Carboniferous rainforest collapse and flourished during the Late Pennsylvanian and Early Permian periods.

Anatomy

Life restoration of Limnoscelis

Diadectomorphs possess both amphibian and reptilian characteristics. Originally these animals were included under the order Cotylosauria, and were considered the most primitive and ancestral lineage of reptiles. More recently they have been reclassified as amphibian-grade tetrapods, closely related to the first true amniotes (though they have also been argued to be amniotes more closely related to synapsids than to sauropsids[2]). Contrary to other Reptiliomorph amphibians, the teeth of the Diadectomorpha lacked the infolding of the dentine and enamel that account for the name Labyrinthodontia for the non-amniote tetrapods.[3]

Classification

Diadectomorpha is most commonly given the rank of order when formal taxonomic ranks are applied. It is further divided into three families, representing specialization into different ecological niches. The exact phylogenetic relationship between the three is disputed.[4]

Reproduction and the origin of Amniota

Life restoration of Diadectes

The reproduction of the Diadectomorphs has been the matter of some debate.[7] If their group lay within the Amniota as has at times been assumed, they would have laid an early version of the amniote egg. Current thinking favours the amniote egg being evolved in very small animals, like Westlothiana or Casineria, leaving the bulky Diadectomorphs just on the amphibian side of the divide.[8][9][10][11]

This would indicate the large and bulky Diadectomorphs laid anamniote eggs (in water). However, no unambiguously diadectomorph tadpole is known. Whether this is due to an actual lack of tadpole stage or taphonomy (many diadectomorphs were upland creatures where tadpoles would have a poor probability of being fossilized) is uncertain. Alfred Romer indicated that the anamniote/amniote divide might not have been very sharp, leaving the question of the actual mode of reproduction of these large animals unanswered.[12] Possible reproductive modes include full amphibian spawning with aquatic tadpoles, internal fertilization with or without ovoviviparity, aquatic eggs with direct development or some combination of these. The reproductive mode might also have varied within the group.

References

  1. 1 2 Jun Liu and Gabe S. Bever (2015). "The last diadectomorph sheds light on Late Palaeozoic tetrapod biogeography". Biology Letters. 11 (5): 20150100. PMC 4455737Freely accessible. PMID 25948572. doi:10.1098/rsbl.2015.0100.
  2. David S. Berman (2013). "Diadectomorphs, amniotes or not?". New Mexico Museum of Natural History and Science Bulletin. 60: 22–35.
  3. Müller, J. & Reisz, R.R. (2005): An early captorhinid reptile (Amniota: Eureptilia) from the Upper Carboniferous of Hamilton, Kansas. Journal of Vertebrate Paleontology, no 23: pp 561-568
  4. Kissel, R. (2010). Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha). Toronto: University of Toronto Press. p. 185. hdl:1807/24357.
  5. Williston, S.W. (1911). "A new family of reptiles from the Permian of New Mexico". The American Journal of Science. 4. 33: 378–398.
  6. Time Traveler: In Search of Dinosaurs and Other Fossils from Montana to Mongolia by Michael Novacek
  7. Benton, M. J. (2000), Vertebrate Paleontology, 2nd ed. Blackwell Science Ltd
  8. Laurin, M. (2004): The Evolution of Body Size, Cope's Rule and the Origin of Amniotes. Systematic Biology no 53 (4): pp 594-622. doi:10.1080/10635150490445706 article
  9. Smithson, T.R. & Rolfe, W.D.I. (1990): Westlothiana gen. nov. :naming the earliest known reptile. Scottish Journal of Geology no 26, pp 137–138.
  10. Paton, R.L.; Smithson, T.R. & Clack, J.A. (1999): An amniote-like skeleton from the Early Carboniferous of Scotland. Nature no 398, pp 508-513 doi:10.1038/19071 abstract
  11. Monastersky, R. (1999): Out of the Swamps, How early vertebrates established a foothold—with all 10 toes—on land, Science News Volume 155, No 21
  12. Romer, A.S. & T.S. Parsons. 1977. The Vertebrate Body. 5th ed. Saunders, Philadelphia. (6th ed. 1985)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.