Deterministic system (philosophy)

A deterministic system is a conceptual model of the philosophical doctrine of determinism applied to a system for understanding everything that has and will occur in the system, based on the physical outcomes of causality. In a deterministic system, every action, or cause, produces a reaction, or effect, and every reaction, in turn, becomes the cause of subsequent reactions. The totality of these cascading events can theoretically show exactly how the system will exist at any moment in time.

To understand this concept, start with a fairly small system. Visualize a set of three dominoes lined up in a row with each domino less than a domino's length away from its neighbors. Once the first domino has toppled, the third domino will topple because the second will topple upon being contacted by the first domino.

Small deterministic systems are easy to visualize, but are necessarily linked to the rest of reality by an initial cause and/or final effect. To go back to the dominoes, something outside the system has to cause the first domino to topple. The last domino falling might cause something else outside the system to happen. And the system itself must be considered in isolation—if external forces such as hurricanes, earthquakes or the hands of nearby people were taken into consideration, the final domino toppling might not be a predetermined outcome. Complete isolation of a system is unrealistic, but useful for understanding what would normally happen to a system when the possibility of external influences is negligible. Complex physical systems are necessarily built using simpler ones, and using isolated systems as a starting model can help bridge the gap and aid in understanding. The domino example is developed in the Petri net computational model.

This example assumes that dominoes toppling into each other behave deterministically. Even the above-mentioned external forces which might interrupt the system are causes which the system did not consider, but which could be explained by cause and effect in a larger deterministic system.

Some deterministic systems

Non-deterministic systems

Events without natural causes cannot be part of a deterministic system. Whether such events actually occur is a matter of philosophical and scientific debate – however, possible uncaused events include:

Quantum physics holds that certain events such as radioactive decay and movement of particles are completely random when taken at the level of single atoms or smaller. Schrödinger's cat is a famous thought experiment in which a cat's survival cannot be determined theoretically before the experiment is done. For almost all everyday non-microscopic occurrences, however, the probability of such random events is extremely close to zero, and can be approximated to almost certainty with statistics using the correspondence principle. The philosophical consequences of quantum physics were once considered by many (including Albert Einstein) to be a major problem for the scientific method which traditionally used a strong version of scientific determinism (see Philosophy of science).

Systems with controversial classification

Some systems are particularly difficult to classify as deterministic or not, and have generated much philosophical debate. The major example would be human minds, and possibly animal minds too. Can people have free will if their minds are truly deterministic? Conversely, when deterministic computers are said to exhibit artificial intelligence, how are their minds similar to ours?

The entire universe

The larger the deterministic system, the longer the necessary chain of cause and effect. The entire universe may be considered as such a system, which creates its own philosophical questions (see Determinism).

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.