Denjoy–Koksma inequality

In mathematics, the Denjoy–Koksma inequality, introduced by Herman (1979, p.73) as a combination of work of Arnaud Denjoy and the Koksma–Hlawka inequality of Jurjen Ferdinand Koksma, is a bound for Weyl sums of functions f of bounded variation.

Statement

Suppose that a map f from the circle T to itself has irrational rotation number α, and p/q is a rational approximation to α with p and q coprime, |α  p/q| < 1/q2. Suppose that φ is a function of bounded variation, and μ a probability measure on the circle invariant under f. Then

(Herman 1979, p.73)

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.