Deinococcus–Thermus

DeinococcusThermus
Scientific classification
Domain: Bacteria
Phylum: DeinococcusThermus
Garrity & Holt 2001
Class: Deinococci
Orders & Families
Synonyms
  • Deinococcaeota Oren et al. 2015

Deinococcus–Thermus is a phylum of bacteria that are highly resistant to environmental hazards, also known as extremophiles.[1] These bacteria have thick cell walls that give them gram-positive stains, but they include a second membrane and so are closer in structure to those of gram-negative bacteria.[2][3][4] Cavalier-Smith calls this clade Hadobacteria[5] (from Hades, the Greek underworld).

Taxonomy

The phylum Deinococcus-Thermus consists of a single class (Deinococci) and two orders:

Though these two groups evolved from a common ancestor, the two mechanisms of resistance appear to be largely independent.[9][13]

Molecular Signatures

Molecular Signatures in the form of conserved signature indels (CSIs) and proteins (CSPs) have been found that are uniquely shared by all members belonging to the Deinococcus-Thermus phylum.[1][9] These CSIs and CSPs are distinguishing characteristics that delineate the unique phylum from all other bacterial organisms, and their exclusive distribution is parallel with the observed differences in physiology. CSIs and CSPs have also been found that support order and family-level taxonomic rankings within the phylum. Some of the CSIs found to support order level distinctions are thought to play a role in the respective extremophilic characteristics.[9] The CSIs found in DNA-directed RNA polymerase subunit beta and DNA topoisomerase I in Thermales species may be involved in thermophilicity,[14] while those found in Excinuclease ABC, DNA gyrase, and DNA repair protein RadA in Deinococcales species may be associated with radioresistance.[15] Two CSPs that were found uniquely for all members belonging to the Deinococcus genus are well characterized and are thought to play a role in their characteristic radioresistant phenotype.[9] These CSPs include the DNA damage repair protein PprA the single-stranded DNA-binding protein DdrB.

Additionally, some genera within this group, including Deinococcus, Thermus and Meiothermus, also have molecular signatures that demarcate them as individual genera, inclusive of their respective species, providing a means to distinguish them from the rest of the group and all other bacteria.[9] CSIs have also been found specific for Truepera radiovictrix .

Phylogeny

The phylogeny is based on 16S rRNA-based LTP release 123 by 'The All-Species Living Tree' Project.[16]


Thermaceae



Rhabdothermus arcticus Steinsbu et al. 2011



Vulcanithermus mediatlanticus Miroshnichenko et al. 2003




Oceanithermus


O. desulfurans Mori et al. 2004



O. profundus Miroshnichenko et al. 2003 (type sp.)





Marinithermus hydrothermalis Sako et al. 2003




Meiothermus



Thermus






Deinococcales


Truepera radiovictrix Albuquerque et al. 2005


Deinococcaceae


Deinobacterium chartae Ekman et al. 2011



Deinococcus





Note:
♠ Strains found at the National Center for Biotechnology Information (NCBI) but not listed in the List of Prokaryotic names with Standing in Nomenclature (LSPN)

Taxonomy

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[17] and National Center for Biotechnology Information (NCBI)[18]

Sequenced genomes

Currently there are 10 sequenced genomes of strains in this phylum.[19]

The two Meiothermus species were sequenced under the auspices of the Genomic Encyclopedia of Bacteria and Archaea project (GEBA), which aims at sequencing organisms based on phylogenetic novelty and not on pathogenicity or notoriety.[20] Currently, the genome of Thermus aquaticus Y51MC23 is in the final stages of assembly by the DOE Joint Genome Institute [21]

References

  1. 1 2 Griffiths E, Gupta RS (September 2007). "Identification of signature proteins that are distinctive of the Deinococcus–Thermus phylum" (PDF). Int. Microbiol. 10 (3): 201–8. PMID 18076002. Archived from the original (PDF) on 2011-06-14.
  2. Gupta RS (2011). "Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes". Antonie Van Leeuwenhoek. 100 (2): 171–182. PMC 3133647Freely accessible. PMID 21717204. doi:10.1007/s10482-011-9616-8.
  3. Campbell C, Sutcliffe IC, Gupta RS (2014). "Comparative proteome analysis of Acidaminococcus intestini supports a relationship between outer membrane biogenesis in Negativicutes and Proteobacteria". Arch Microbiol. 196 (4): 307–310. PMID 24535491. doi:10.1007/s00203-014-0964-4.
  4. Sutcliffe IC (2010). "A phylum level perspective on bacterial cell envelope architecture". Trends Microbiol. 18 (10): 464–470. PMID 20637628. doi:10.1016/j.tim.2010.06.005.
  5. Cavalier-Smith T (2006). "Rooting the tree of life by transition analyses". Biol. Direct. 1: 19. PMC 1586193Freely accessible. PMID 16834776. doi:10.1186/1745-6150-1-19.
  6. 1 2 Albuquerque L, Simões C, Nobre MF, et al. (2005). "Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov.". FEMS Microbiol Lett. 247 (2): 161–169. PMID 15927420. doi:10.1016/j.femsle.2005.05.002.
  7. 1 2 Garrity GM, Holt JG. (2001) Phylum BIV. "Deinococcus–Thermus". In: Bergey’s manual of systematic bacteriology, pp. 395-420. Eds D. R. Boone, R. W. Castenholz. Springer-: New York.
  8. 1 2 Garrity GM, Bell JA, Lilburn TG. (2005) Phylum BIV. The revised road map to the Manual. In: Bergey’s manual of systematic bacteriology, pp. 159-220. Eds Brenner DJ, Krieg NR, Staley JT, Garrity GM. Springer-: New York.
  9. 1 2 3 4 5 6 7 Ho J, Adeolu M, Khadka B, Gupta RS (2016). "Identification of distinctive molecular traits that are characteristic of the phylum "Deinococcus-Thermus" and distinguish its main constituent groups". Syst Appl Microbiol. 39 (7): 453–463. PMID 27506333. doi:10.1016/j.syapm.2016.07.003.
  10. Battista JR, Earl AM, Park MJ (1999). "Why is Deinococcus radiodurans so resistant to ionizing radiation?". Trends Microbiol. 7 (9): 362–5. PMID 10470044. doi:10.1016/S0966-842X(99)01566-8.
  11. http://www.bacterio.cict.fr/classifphyla.html#DeinococcusThermus
  12. Nelson RM, Long GL (1989). "A general method of site-specific mutagenesis using a modification of the Thermus aquaticus". Anal Biochem. 180 (1): 147–151. PMID 2530914. doi:10.1016/0003-2697(89)90103-6.
  13. Omelchenko MV, Wolf YI, Gaidamakova EK, et al. (2005). "Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance". BMC Evol. Biol. 5: 57. PMC 1274311Freely accessible. PMID 16242020. doi:10.1186/1471-2148-5-57.
  14. Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA (1999). "Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution". Cell. 98 (6): 811–824. PMID 10499798. doi:10.1016/S0092-8674(00)81515-9.
  15. Tanaka M, Earl AM, Howell HA, Park MJ, Eisen JA, Peterson SN, Battista JR (2004). "Analysis of Deinococcus radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance". Genetics. 168 (1): 21–23. PMC 1448114Freely accessible. PMID 15454524. doi:10.1534/genetics.104.029249.
  16. 'The All-Species Living Tree' Project."16S rRNA-based LTP release 123 (full tree)" (PDF). Silva Comprehensive Ribosomal RNA Database. Retrieved 2016-03-20.
  17. J.P. Euzéby. ""Deinococcus-Thermus"". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2016-03-20.
  18. Sayers; et al. ""Deinococcus-Thermus"". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2016-03-20.
  19. http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html
  20. Wu, D.; Hugenholtz, P.; Mavromatis, K.; Pukall, R. D.; Dalin, E.; Ivanova, N. N.; Kunin, V.; Goodwin, L.; Wu, M.; Tindall, B. J.; Hooper, S. D.; Pati, A.; Lykidis, A.; Spring, S.; Anderson, I. J.; d'Haeseleer, P.; Zemla, A.; Singer, M.; Lapidus, A.; Nolan, M.; Copeland, A.; Han, C.; Chen, F.; Cheng, J. F.; Lucas, S.; Kerfeld, C.; Lang, E.; Gronow, S.; Chain, P.; Bruce, D. (2009). "A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea". Nature. 462 (7276): 1056–1060. Bibcode:2009Natur.462.1056W. PMC 3073058Freely accessible. PMID 20033048. doi:10.1038/nature08656.
  21. http://www.ncbi.nlm.nih.gov/genomeprj/55053
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.