Degree-constrained spanning tree

In graph theory, a degree-constrained spanning tree is a spanning tree where the maximum vertex degree is limited to a certain constant k. The degree-constrained spanning tree problem is to determine whether a particular graph has such a spanning tree for a particular k.

Formal definition

Input: n-node undirected graph G(V,E); positive integer kn.

Question: Does G have a spanning tree in which no node has degree greater than k?

NP-completeness

This problem is NP-complete (Garey & Johnson 1979). This can be shown by a reduction from the Hamiltonian path problem. It remains NP-complete even if k is fixed to a value ≥ 2. If the problem is defined as the degree must be ≤ k, the k = 2 case of degree-confined spanning tree is the Hamiltonian path problem.

Degree-constrained minimum spanning tree

On a weighted graph, a Degree-constrained minimum spanning tree (DCMST) is a degree-constrained spanning tree in which the sum of its edges has the minimum possible sum. Finding a DCMST is an NP-Hard problem.[1]

Heuristic algorithms that can solve the problem in polynomial time have been proposed, including Genetic and Ant-Based Algorithms.

Approximation Algorithm

Fürer & Raghavachari (1994) gave an approximation algorithm for the problem which, on any given instance, either shows that the instance has no tree of maximum degree k or it finds and returns a tree of maximum degree k+1.

References

  1. Bui, T. N. and Zrncic, C. M. 2006. An ant-based algorithm for finding degree-constrained minimum spanning tree. In GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages 11–18, New York, NY, USA. ACM.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.