d'Alembert's formula
In mathematics, and specifically partial differential equations (PDEs), d'Alembert's formula is the general solution to the one-dimensional wave equation:
for . It is named after the mathematician Jean le Rond d'Alembert.[1]
Details
The characteristics of the PDE are , so we can use the change of variables to transform the PDE to . The general solution of this PDE is where and are functions. Back in coordinates,
- is if and are .
This solution can be interpreted as two waves with constant velocity moving in opposite directions along the x-axis.
Now let us consider this solution with the Cauchy data .
Using we get .
Using we get .
We can integrate the last equation to get
Now we can solve this system of equations to get
Now, using
d'Alembert's formula becomes:
See also
Notes
- ↑ D'Alembert (1747) "Recherches sur la courbe que forme une corde tenduë mise en vibration" (Researches on the curve that a tense cord forms [when] set into vibration), Histoire de l'académie royale des sciences et belles lettres de Berlin, vol. 3, pages 214-219. See also: D'Alembert (1747) "Suite des recherches sur la courbe que forme une corde tenduë mise en vibration" (Further researches on the curve that a tense cord forms [when] set into vibration), Histoire de l'académie royale des sciences et belles lettres de Berlin, vol. 3, pages 220-249. See also: D'Alembert (1750) "Addition au mémoire sur la courbe que forme une corde tenduë mise en vibration," Histoire de l'académie royale des sciences et belles lettres de Berlin, vol. 6, pages 355-360.
External links
- An example of solving a nonhomogeneous wave equation from www.exampleproblems.com
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.