Cyrilovite

Cyrilovite
General
Category Phosphate mineral
Formula
(repeating unit)
NaFe3+3(PO4)2(OH)4·2(H2O)
Strunz classification 8.DL.10
Dana classification 42.07.08.01
Crystal system Tetragonal
Crystal class Trapezohedral (422)
H-M Symbol: (422)
Space group P41212
Identification
Color Bright yellow, honey-yellow, orange to brownish yellow, brown
Crystal habit Massive, granular, pseudo cubic, radiating to botryoidal aggregates and crusts
Cleavage None
Fracture Conchoidal
Mohs scale hardness 4
Luster Vitreous
Streak Yellow
Diaphaneity Translucent
Specific gravity 3.081–3.096
Optical properties Uniaxial (-)
Refractive index nω = 1.802–1.805, nε = 1.769–1.775
Birefringence δ = 0.033
Pleochroism Weak
References [1][2][3][4]

Cyrilovite (NaFe33+(PO4)2(OH)4·2(H2O)) is a hydrous sodium iron phosphate mineral. It is isomorphous and isostructural with wardite, the sodium aluminium counterpart.[5]

Cyrilovite is found in granitic pegmatites.[6] It was first discovered in 1953 in a pegmatite at Cyrilov, near Velké Meźiřiči, West Moravia, Czech Republic.[2]

Composition

The chemical formula of cyrilovite is NaFe3+3(PO4)2(OH)4·2(H2O).[1] Parent phosphate minerals, fluorapatite and triplite-zwieselite, were transformed by hydrothermal alteration and weathering to give a complex, microcrystalline intergrowth of secondary phosphate minerals that include cyrilovite.[7] The sequence of phosphate transformations ended with the formation of cyrilovite within the fluorapatite fractures and the replacement of fluorapatite by lipscombite and crandallite-group minerals.[7] Fransolet suggest that a part of the leached Na leads to the precipitation of cyrilovite, in the fissures cause by the volume decrease resulting from the transformation of typhylite to heteresoite.[6] Mobilization of alkalis and of relatively immobile elements including aluminium and rare-earth elements are subsequently incorporated into precipitating cyrilovite, lipscombite and crandallite-group minerals.[7]

The chemical analysis shows substitution not only of Al for Fe, but also of K and Mn for Na, measured and observed specific gravities are considered to be in good agreement.[5] Ferric iron occurs virtually alone in H20 rich minerals such as phosphosiderite, and coupled with Na, K, or Ca in cyrilovite.[6] It is soluble in hot dilute HCl, in hot dilute H2SO4, and, with difficulty, in hot dilute HNO3.[5] In the closed tube, it gives off water and fuses.[5]

Geologic occurrence

The mineral wardite is capable of crystallizing in a similar form to that of cyrilovite because of their closely related chemical compositions. Between wardite’s composition, NaAl3(PO4)2(OH)4·2(H2O), and cyrilovite’s composition, NaFe3(PO4)2(OH)4·2(H2O), they’re able to form end members of a series of solid solutions. Either of the two minerals can occur in various proportions in a series of solid solutions in the wardite mineral group. Cyrilovite is a rare accessory mineral in some oxidizing phosphate-bearing granite pegmatitles and iron deposits. The sequence of phosphate transformations ended with the formation of cyrilovite within the F-apatite factures and the replacement of F-apatite by lipscombite and crandillite-group minerals.[7] Weathering-related cyrilovite, lipscombite, and crandillite-group minerals were formed by percolating meteoric waters under increasing oxygen fugacity.[7]

Structure

The crystal structures of natural wardite and of the isomorphous cyrilovite have the space group P41212, Z=4). Hydrogen atoms were not located, but reasonable positions can be estimated. The cell dimentsions of cyrilovite are: c = 19.4, a = 7.32 Å.[5]

The individual crystals are usually smaller than 0.1 mm and many of them are intergrown. Crystals are squat and when single tend to lie on the basal pinacoid. The pinacoid {001} and the dipyramid {113} are the dominant forms; all the faces of thse forms tend to be present and equally well developed. The dipyramid {012} is not always present. The direction for the a-axis is at 45° angle to the smallest primitive unit cell.[5]

Physical properties

Cyrilovite is a vitreous translucent mineral that can appear in colors ranging from a bright yellow, honey-yellow, orange to brownish yellow, or brown and it has a hardness of 4. It has a yellow streak. The mineral is classified under the space group P41212 and is tetragonal.[1]

References

  1. 1 2 3 http://rruff.geo.arizona.edu/doclib/hom/cyrilovite.pdf Handbook of Mineralogy
  2. 1 2 http://www.mindat.org/min-1206.html Mindat.org.
  3. http://webmineral.com/data/Cyrilovite.shtml Webmineral data
  4. Mineralienatlas
  5. 1 2 3 4 5 6 Lindberg, M. L. (1957) Relationship of the minerals avelinoite, cyrilovite, and wardite. American Mineralogist, 42, 204–213.
  6. 1 2 3 Fransolet, A. M., Cooper, M. A., Cerny, P., Hawthorne, C., Chapman, R. (2000) The tanco pegmatite at Bernic Lake, Southeastern Manitoba. The Canadian Mineralogist, 38, 893–898.
  7. 1 2 3 4 5 Lottermoser, B., Lu, J. (1997) Petrogenesis of rare-element pegmatites in the Olary Block, South Australia. 1. Mineralogy and chemical evolution. Mineralogy & Petrology, 59, 1–19.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.